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ABSTRACT The normal modes of a molecule
are utilized, in conjunction with classical conformal
vector field theory, to define a function that mea-
sures the capability of the molecule to deform at
each of its residues. An efficient algorithm is pre-
sented to calculate the local chain deformability
from the set of normal modes of vibration. This is
done by considering each mode as an off-grid sample
of a deformation vector field. Predictions of deform-
ability are compared with experimental data in the
form of dihedral angle differences between two
conformations of ten kinases by using a modified
correlation function. Deformability calculations cor-
relate well with experimental results and validate
the applicability of this method to protein flexibility
predictions. Proteins 2004;56:661–668.
© 2004 Wiley-Liss, Inc.
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INTRODUCTION

Many cellular functions depend on the conformational
changes of the molecules involved in such process. Follow-
ing the basic principle if you know how it moves, you can
infer how it works, the knowledge of structural flexibility
offers a straight-line connection between structure and
function. To date, several efforts have been made regard-
ing the study of molecular flexibility. These endeavors can
be divided into two major groups: (1) those based on the
comparative analysis of two or more conformational states
at atomic resolution; and (2) those that attempt to forecast
the intrinsic flexibility from a single conformation. Within
the first group, a number of approaches exist for character-
izing the intrinsic deformability inside a protein from
different crystallographic or NMR structures of the same
protein.1–3 In this case, one is limited by the availability of
experimental conformational states. Due to their predic-
tive power, the second group is more interesting from the
biological point of view. In this context, there are several
conventional methods that simulate the protein dynamics
numerically. Among them, Molecular Dynamics (MD) and
Monte Carlo (MC) simulation allow the direct study of the
trajectories.4–8 The disadvantage of these methods is that
the computational time needed to reach large-scale confor-
mational changes is beyond practical wide-range applica-
tion. (There are, however, faster low-resolution models
that achieve good results9). Other approaches try to iden-

tify flexible hinge joints or rigid domains directly from a
single conformation of the molecule.10–14 Very recently, an
ingenious and elegant approach was developed for estimat-
ing the flexibility of proteins using graph theory.14 Despite
the excellent results obtained, the outcome is rather
qualitative and mainly a distinction between rigid and
nonrigid residues of the protein. The methods in this class
are in general fast, but need to be carefully validated with
experimental observations.

Midway between methods that simulate the protein
motion with a detailed potential and those using a more
drastic modeling approach, normal mode analysis (NMA)
of simplified protein models is a very attractive tool that
permits the study of dynamics of proteins and other
macromolecules. Modal analysis has been applied success-
fully to predict large-scale motions from a single conforma-
tion. This analysis, based on strongly softened and reduced
models and on the harmonic approximation of the motion,
yields the vibrational modes of a given structure or
model.15–17 These modes constitute an orthonormal vector-
space basis of the system displacements, i.e., any displace-
ment can be described as a linear combination of such
modes.

Several authors pointed out the excellent correlation
between modal analysis results and the observed func-
tional motions.16,18,21 A good example of this correlation
can be observed in the molecular movements database,19

where it is possible to compare a collection of observed
protein motions with those analyzed by NMA.20 Recent
efforts extend the applicability range of this technique to
large systems by reducing the spatial detail and using a
more simplified harmonic interaction potential.21,22 Fur-
thermore, even without atomic resolution and from low
resolution structures, good correlation has been found
between the motion characterized by the low frequency
modes and the experimentally observed functional mo-
tions of large macromolecules.23

Here we present a method that combines NMA of an
improved “contact” model of a protein with conformal
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vector field theory. Considering the modes as vector fields
over the molecule, we can define what we call deformabil-
ity function. The proposed method represents the molecu-
lar structure as a network of point masses interconnected
with springs, whose strengths are dependent on the dis-
tance of the corresponding point masses and on the residue
contact areas. This mechanical model of the molecule is
then subjected to a normal mode analysis, and the set of
modes and frequencies obtained are subsequently merged
together, in a precise mathematical way, to give a measure
of the amount of deformation that the protein molecule can
undergo at each of its residues. Here, we present the
results and performance achieved using as input several
protein kinases with two known conformational states.
The results obtained demonstrate that the deformability
function is well correlated with experimental results and
validate its applicability to predict protein flexibility.

MATERIALS AND METHODS
Protein Vibrational Analysis

Normal mode analysis (NMA) furnishes a way to study
the atomic motions of a molecule by decomposing them
into their different vibrational modes and frequencies.24,

25 It has been originally applied to small molecules, but as
computer power has been growing, it is now possible to
study proteins with more than 200 amino acids using an
all-atom model. However, since we intend our method to be
fast, we use a reduced C� normal mode analysis approach,
which, according to observations of many researchers,22

reproduces quite accurately the large-scale molecular mo-
tions as predicted by the all-atom model. Also, since
vibrations are computed based on a single minimum of the
harmonic energy landscape, the low-frequency modes
should correspond to the directions of more shallow energy
increase, i.e., to those of more deformability of the struc-
ture.

Thus, given a protein molecule, its C� atoms are intercon-
nected with “springs” of certain strengths (described be-
low). This harmonic model of the molecule gives rise to a
potential energy function E. If H denotes the Hessian of E,
we have the standard secular equation:

det(H � �M) � 0, (1)

where M is the mass matrix, which in our case is diagonal.
In order to get a symmetric eigenvalue problem, the
secular equation is rewritten as:

det(H̃ � �I) � 0, (2)

where H̃ � M�1/2HM�1/2. The eigenvalues �n � �n
2 (where

the �n are the vibrational frequencies) and the correspond-
ing eigenvectors ũn of H̃ (the normal modes of vibration)
are determined by a diagonalization procedure. The “modi-
fied modes” un of the system are easily obtained from the
ũn:

un � M�1/2ũn. (3)

Each of these modified modes can be visualized as the
velocity vectors that atoms have when, while vibrating
according to that mode, they pass through their initial
positions.

We perform the normal mode analysis (NMA) on the C�

atoms, setting the mass mi of each as the total mass of the
corresponding ith residue. The spring strengths are set in
the following way:

Cij � � r0

rij
� 6

� a sij, (4)

where i, j denote residue numbers, rij is the distance
between the � carbons of residues i and j, and the sij are
normalized residue contact areas, which are computed by
the ICM program,26 using the algorithm presented in
Shrake and Ruptey.27 The parameter r0 was set to 3.8Å,
which is approximately the mean distance between con-
secutive � carbons. The sixth power for the contact
strengths was determined empirically as the lowest power
that produces predictions close to those obtained by using
constant strength within a cutoff radius and zero outside.
The parameter a is determined so as to optimize the
correlation of the predictions with the experimental data
contained in our benchmark (Table I).

Using the above strengths and masses, and for a fixed
value of a, an NMA is performed by means of a highly
efficient subroutine in the LAPACK linear algebra li-
brary,28 yielding eigenvalues �n and eigenvectors ũn (1 �

TABLE I. Testing Benchmark Consisting of Ten Pairs of Kinases†

Molecule Conf. A Conf. B N min rc (Å)

Protein kinase spk1 1j4p (A) 1k3q (A) 151 10
Pyrophosphokinase 1hka (A) 1eqo (A) 158 7
hprk protein 1kkl (A) 1jb1 167 11
Adenosylcobinamide kinase 1cbu (A) 1c9k (B) 180 7
Guanylate kinase 1ex6 (A) 1ex7 (A) 186 9
Adenylate kinase 1dvr (A) 1aky 220 7
Cyclin-dependent kinase 1fin (A) 1hcl 298 8
Adenosine kinase 1lio 1lik 329 8
cAMP-dependent protein kinase 1cmk (E) 1jlu (E) 350 8
3-phosphoglycerate kinase 16pk 13pk (A) 415 8

†Shown are the PDB codes of both conformations, the number N of residues, and the minimum cutoff radius (rc)
such that a NMA performed with spring strengths that vanish outside rc yields no “floppy modes” (i.e., those with
eigenvalue 0, other than the six corresponding to rigid motions).
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n � 3N). Assuming that the �n are sorted in increasing
order, we have �1 � . . . � �6 � 0 (modes corresponding to
rigid motions). The frequencies of vibrations are
�n � ��n. Each normal mode ũn is normalized so that

�
i�1

N �ũi
n�2 � 1. Then the “modified” (velocity) modes un

are obtained from the ũn through Eq. 3.

Conformal Vector Field Theory

Each normal mode un obtained in the vibrational analy-
sis can be viewed as a vector field over the molecule. Thus,
we can harness the vector field theory framework to
process the normal mode results. Using this viewpoint
allows us to define a function that measures the capability
of the molecule to deform at each of its residues. To this
end, we briefly review a few concepts from vector field
theory.

A given vector field u : G3 �3 is called conformal vector
field if, for every t, �t : G 3 G is a conformal transforma-
tion29 of G. Here {�t} is the 1-parameter group of transfor-
mations30 defined by the vector field, and G � �3 is an open
set containing the points that represent our molecule (in
our case, the C� atoms). Thus, conformality of u means
that following the integral curves of the field produces
transformations that preserve shape (locally), i.e., angles
are not changed. The following theorem regarding confor-
mal vector fields is fundamental for our method:

Theorem. The vector field u is conformal if and only if
the tensor field S � Su with components

Skl �
1
2��uk

�xl
�

�ul

�xk
� �

1
3 div u �kl 	1 � k, l � 3
 (5)

vanishes identically.
For a proof of this theorem, see Weber and Goldberg.29

Here �kl denotes the Kronecker delta: �kl � 1 if k � l and 0
otherwise. Also, div u denotes the divergence of u: div u �
¥k�1

3 �uk/�xk.
Note: In this section, u1, u2, u3 stand for the three

components of the vector field u as functions of the spatial
coordinates x1, x2, x3. This should not be confused with an
expression such as ui, which means “u at the ith residue”
(a 3D vector).

We note that the “main part” of the tensor S is nothing
but the strain tensor of linear elasticity theory31:

Ekl �
1
2��uk

�xl
�

�ul

�xk
� . (6)

This tensor has the property that its vanishing is
equivalent to u representing, through its flow, rigid mo-
tions of G. (In this case, each �t is an isometry, and u is
called a Killing vector field).

The correction term 1/3 div u, substracted from the
diagonal entries of Ekl, measures the change in volume as
one follows the flow of u, thereby taking care of any change
of scale. Hence, the tensor S is insensitive to changes in
scale; it only detects changes of shape. In other words, it
gives a measure of the change of shape produced when
following the flow of u. By the way, this correction term is

important in order to compensate for the necessary “un-
physical softness” of our protein model.

If we denote with �u the gradient of u, that is, the
matrix whose entries are

(�u)kl � uk,l �
�uk

�xl
	1 � k, l � 3
, (7)

and with sym the “symmetrization operator”:

sym A �
1
2 	A � AT
, where AT � transpose of A, (8)

then the tensor Su can be written as:

Su � sym(�u) �
1
3 div u I, (9)

where I is the 3 � 3 identity matrix.

Deformability

According to the theorem and remarks in the previous
section, for a given vector field u we can define the
deformation function du: G3 � as:

du � �Su�. (10)

Here � � � denotes the norm of a tensor; see Appendix A
for details. The function du quantifies the deformation
(change of shape) produced by the vector field u on the
molecule. Since every normal mode un is considered as a
vector field, it is possible to characterize the deformation of
the molecule by taking the norm of the “conformal tensor”
Sun associated to each mode. Thus, in analogy to the
classical formula for the atomic fluctuations32:

	�ri

2� � kBT�

n�7

3N ��ui
n�

�n
�2

, (11)

where i denotes residue number, kB is Boltzmann’s con-
stant, and T is temperature, we call deformability of the
molecule M to the function dM : M3 � defined by:

dM
2 � �

n�7

3N �dun

�n
�2

, (12)

or, by making the residue number i explicit:

dM	i
 � � �
n�7

3N �dun	i

�n

�2�1/2

. (13)

Thus, by means of the normal modes we capture all
possible ways in which the molecule can deform, and then
combine the deformation measures dun corresponding to
each mode by using their statistical thermal amplitudes
�n

�1, in order to obtain the function dM describing how
much, in average, the molecule can deform at each point
(residue). Although at first sight it might seem that the
concept of deformability is a local one, it is actually global,
i.e., its value at a particular point depends on the global
structure of the molecule. Also, it can be easily checked
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that our definition of deformability, Eq. 12, is invariant
under scaling of the masses mi, and also under scaling of
the contact strengths Cij

Note that deformability (Eq. 12) gives us a measure of
the flexibility of the protein, whereas the classical fluctua-
tion formula (Eq. 11) is related to protein mobility (typi-
cally reflected in B-factors). Both measures are complemen-
tary but distinct. For example, Figure 1 shows one of the
molecules in our set (1j4p), which has a protruding helix
connected to the rest of the protein by a loop. Points in this
loop have lower mobility values (B-factors) than points
closer to the tip of the helix, but have higher deformability
values than points in the helix, since the loop acts as an
elbow or hinge region around which the helix can rotate. In
this way, our deformability measure can be utilized to
detect hinge points. Another example is 1kkl (see Figs. 2
and 3), although in this case the loop region (f) is not as
flexible due to its particular (“helix-like”) geometry, which
makes it somewhat rigid (but less rigid than the helix).

Calculation of the Spatial Derivatives

In order to compute the deformability, we have to compute
the tensors Sun. For this, in turn, we need a numerical way to
evaluate derivatives of the normal mode vector fields, whose
values are known only at the N points (residues) of the
molecule. Several methods exist for performing interpolation
and gradient estimation of scattered data.33, 34 Gradient
estimation is usually done by differentiating an interpolant
fitted to the data.34 We chose Hardy’s hyperbolic multiquad-
ric interpolant,35 which, according to tests,33, 34 performs
extremely well. The only reported drawback of this method is
that it is more time consuming than other methods, but this
begins to be an issue only for 104–105 points. Indeed, even for
the largest of our test cases (415 residues), it takes a small
fraction of a second to compute the gradient of a function on

the whole molecule. Another advantage of this method is that
the same interpolant can be used for the whole set of points.

The outline of Hardy’s hyperbolic multiquadric method
is as follows. Suppose the molecule M consists of points p1,
p2, . . ., pN (in our case, � carbons). Then the interpolant
has the form:

g	p
 � �
i�1

N

ci�dist(p,pi)2 � b, (14)

where “dist” denotes the distance between two points, and
b is an adjustable parameter. Its value has negligible effect
on the quality of the gradient estimation; we set it to 1

10
of

the squared diameter of the molecule.34

The coefficients ci are determined by imposing the
condition that the interpolant and the given function agree
on all points pj:

g	pj
 � f	pj
 	1 � j � N
. (15)

Then, analytical derivatives of the interpolant g furnish
approximate values for the derivatives of f.

RESULTS AND DISCUSSION

We applied our method to the cases contained in our
testing benchmark (Table I). The benchmark consists of ten
kinases of various shapes and sizes available in two distinct
atomic conformations (conformation A and B in Table I).
Specifically, we computed the deformation functions dM from
the conformation A of each protein. Examples of the results
are shown in Figure 2, which are color- and size-coded
according to the deformability values at each residue: blue/
small means more rigid, red/large more deformable. As can
be seen, the results are consistent with the expected protein
structural flexibility. In all cases, the terminal regions,
external loops, or hinge regions are coincident with high
deformability values. In fact, a good qualitative agreement
can be noticed between the flexibility observed in the relative
motion of the two conformations available for each protein
and the deformability measures. Nevertheless, an accurate
manner to assess the correspondence level of deformability
and protein flexibility is required. To this end, the deformabil-
ity predictions obtained were compared with the dihedral
angle difference (DAD) between both conformations of each
kinase (see Appendix B for DAD definition). The DADs
corresponding to the examples in Figure 2 are plotted versus
residue number in Figure 3. There, it can be seen that there
is a qualitative agreement between the predictions and the
DADs, but the location of the peaks of the predictions appear
somewhat shifted, some to the left, some to the right. This is
presumably due to the “linking effect” that the interpolation
of the vectors has over nearby regions of the molecule.

To quantify the agreement between deformability (vari-
able X) and DAD (variable Y), one could use the usual
correlation function, defined by:

corr0 �
1

N � 1 �
j�1

N Xj � X�

�X
�
Yj � Y�

�Y
, (16)

Fig. 1. This protein (PDB code 1j4p) illustrates the contrast between
mobility [given by the classical fluctuation formula (Eq. 11), and reflected
in B-factors] and deformability (defined by Eq. 12). The helix is relatively
rigid (low deformability values), but points near its tip are quite mobile
(high mobility values), whereas the loop will have low mobility but high
deformability values, acting as a hinge region around which the helix can
rotate. See also Figures 2 and 3.
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Fig. 2. Color- and size-coded deformability maps for four of the cases tested: (a) 16pk; (b) 1j4p; (c) 1dvr; (d)
1kkl. Red and large features indicate more flexible residues. Small italic letters refer to features indicated in
Figure 3. The value of the parameter a is 0.25. Besides the double cue of color and size, the “fog” effect helps in
distinguishing the depth of different parts of the molecules.

Fig. 3. Deformability (blue) and dihedral angle difference (magenta) between conformations A and B (Table
I), plotted vs. residue number, for the four cases shown in Figure 2 (italic letters indicate corresponding
features), using the optimal a (0.25). The deformability curves have been raised to avoid clutter.
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where X� ,Y� are the averages of the samples, and �X, �Y are
their standard deviations. However, due to the slight
shifting of the peaks, the corr0 values (shown in the “no
window” column in Table II) turn out to be relatively low.

In order to properly measure the agreement, and to
estimate the parameter a in Eq. 4, we need a robust
objective function to be maximized against this parameter.
Since corr0 is too sensitive to small displacements of the
peaks, we consider a “windowed correlation.” For an
integer h � 0, it is defined as follows:

corrh �
1

N � 1 �
j�1

N Xj � X�

�X
�

Ykj � Y�

�Y
, (17)

where kj is an index between j � h and j � h satisfying:

�Ykj � Y�

�Y
�

Xj � X�

�X
� � �Yl � Y�

�Y
�

Xj � X�

�X
� (18)

for all l between j � h and j � h.
A window h � 3 was seen to be enough to capture the

small shifts of the peaks across the benchmark. Therefore,

we computed corr3 for each of the cases in the benchmark
and for a range of values of a. Results are shown in Figure
4. The average of the corr3’s over the benchmark is
maximum for a � 0.25.

Values of corr3 are listed in the last column of Table II
for all the cases of our benchmark. According to Figures 3
and 4, we can see that a value of corr3 � 0.5 or more
indicates a reasonably good agreement with experimental

Fig. 4. Correlation (3-residue window) as a function of the weight w of
the contact area term. This weight is related to the parameter a in Eq. 4 by
w � a/(1 � a). The letters (a–d) refer to the four cases shown in Figures 2
and 3 (a–d). The correlation averaged over the ten cases has a maximum
at w � 0.2 or a � 0.25. Table II lists the correlation values for this a.

Fig. 5. (a) Deformability for the 16pk kinase [same as Fig. 2(a)]. (b)
Flexibility index from the program FIRST. The picture was captured
directly from the screen output of the FirstWeb website.14

TABLE II. Correlation Values for a � 0.25†

Molecule PDB (conf. A)

Correlation

No window 3-residue window

Protein kinase spk1 1j4p 0.370 0.496
Pyrophosphokinase 1hka 0.374 0.538
hprk protein 1kkl 0.412 0.796
Adenosylcobinamide kinase 1cbu 0.088 0.487
Guanylate kinase 1ex6 0.191 0.610
Adenylate kinase 1dvr 0.294 0.638
Cyclin-dependent kinase 1fin 0.384 0.691
Adenosine kinase 1lio 0.264 0.623
cAMP-dependent protein kinase 1cmk 0.196 0.578
3-phosphoglycerate kinase 16pk 0.119 0.308

†Shown are the correlations between the deformability values (computed using Eq. 12) and the
dihedral angle difference between conformations A and B of each molecule. (These are plotted in
Fig. 3). The “no window” column shows “raw” correlations, while the “3-residue window” column
shows the correlations obtained by allowing an offset of 3 residues (see text for details).

666 J. A. KOVACS ET AL.



data. Of all ten cases in the benchmark, there is only one
outlier (case (a) in Figures 2–4), whose correlation is 0.3,
while the rest have correlations between 0.5 and 0.8. We
applied the FIRST program14 to this case, obtaining
predictions similar to ours (Fig. 5). This suggests that the
low correlation value for this particular case is due to an
inappropriate second conformation of the molecule (in
which the molecule, being able to deform relative to the
first conformation, does not).

We have compared the deformability values with acces-
sibility and with B-factors, and observed that all three are
essentially different measures. Naturally, in some struc-
tures (like 16pk) there are similarities in, e.g., flexible
protruding loops. But in general there is low correlation
between these measures (like in the protruding helices in
Fig. 2).

CONCLUSIONS

We introduced the concept of deformability, which is a
measure of the capability of a given molecule to deform at
each of its residues. This was done in three steps: (1)
obtaining the normal modes of vibration of the molecule;
(2) measuring, by means of the norm of the “conformal
tensor” associated to each mode, the amount of deforma-
tion that each mode produces on the molecular structure;
(3) combining all these measures into a single deformabil-
ity measure using the statistical thermal amplitudes �n

�1

of the modes.
In order to perform the NMA, we utilized a mechanical

model of the molecule in which the � carbons are connected
with one another with springs whose strengths are ex-
pressed as a combination of two terms: an inverse sixth
power of the distance, and a term proportional to the area
of contact between the corresponding residues. This defini-
tion gives results similar to those using the classical cutoff
radius, and is mathematically more convenient, since it
avoids the discontinuity at the boundary of the cutoff
sphere.

Deformability predictions performed by this method
were compared with experimental data obtained by mea-
suring the DAD of the two atomic conformations available
for each kinase (Table I). To quantify this agreement, and
at the same time to have an objective function to maximize
against the coefficient a of the contact area term, we
considered the “windowed correlations” corrh for integers
h � 0. The usual correlation, corr0, is too sensitive to small
shifts in the location of the peaks of the predictions relative
to those of the DADs. We noted that taking h � 3 residues
covers amply the observed shifts (which, presumably, are
due to the “linking effect” produced by the interpolation of
the vectors implicit in the numerical calculation of the
spatial derivatives). Therefore, corr3 was taken as the
objective function, resulting in a � 0.25 being the optimal
value across our benchmark.

For all test cases except one, correlations between 0.5
and 0.8 have been obtained. The 3-phosphoglycerate ki-
nase was the only outlier with a correlation of 0.3. In this
case, the low correlation value can be attributed to an
inappropriate second conformation, since (1) the deform-

ability observed in (a) in Figure 4 seems reasonable (high
values in loop and hinge regions), and (2) very compatible
results were obtained using the qualitative flexibility
prediction method based on graph theory14 (Fig. 5). There-
fore, the good agreement found between the deformability
function and the atomic experimental data validates our
method as a quantitative way for estimating flexibility.
This method inherits the low computational cost and wide
applicability range of traditional modal analysis and ex-
tends its prediction power to a quantitative level.

In this work we demonstrate, with a small set of kinases,
the potential application range of our method. However,
the general applicability of this method—and the validity
of the current parametrization—must be addressed with a
more comprehensive data set. We are currently working
on the improvement of the spring strengths by using the
actual free energy of the contacts, in particular to distin-
guish strong hydrophobic contacts from weaker ones. We
will present this in a future publication, applied to a larger
family of protein kinases for which different conformations
are available. This will be a crucial point to reflect more
realistically the interaction between residues, thereby
enhancing the deformability prediction ability of this
approach.

APPENDIX A: OPERATOR NORMS

Let A be a symmetric 3 � 3 matrix. It naturally defines
an operator (denoted with the same name) A: �3 3 �3 by
multiplication: A(x) � Ax. We can define a number of
measures to quantify the “magnitude” of this operator,
e.g.:

m1 � max{��1�, ��2�, ��3�},

where the �i are the eigenvalues of A, (19)

m2 � max
�x��1

�	Ax,x
�, (20)

m3 � max
�x��1
�y��1

�	Ax, y
�, (21)

m4 � max
�x��1

�Ax�. (22)

It is straightforward to check that m1 � m2 � m3 � m4.
On the other hand, the spectral theory of self-adjoint
operators36 shows that m1 � m4. Therefore, all the above
measures are actually the same:

m1 � m2 � m3 � m4. (23)

This common value is called the norm of A, and is denoted
by �A�. Incidentally, m1 gives us a concrete way to compute
the norm.

APPENDIX B: DIHEDRAL ANGLE DIFFERENCE
CALCULATION

For each pair of conformations, the dihedral angle
difference (DAD) was computed in the following way:

DADi � ��i
A � �i

B� � ��i
A � �i

B�, (24)
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where each angle difference was reduced to a value
between �180° and �180° prior to taking its absolute
value. The meaning of these angles is as follows: �i is the
torsion angle around the bond connecting the N and C�

atoms of residue i, and �i is the torsion angle around the
bond connecting the C� and C atoms of residue i.
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