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Abstract

The distance-dependent knowledge-based DrugScorePPI potentials, previously developed for in silico alanine scanning and
hot spot prediction on given structures of protein-protein complexes, are evaluated as a scoring and objective function for
the structure prediction of protein-protein complexes. When applied for ranking ‘‘unbound perturbation’’ (‘‘unbound
docking’’) decoys generated by Baker and coworkers a 4-fold (1.5-fold) enrichment of acceptable docking solutions in the
top ranks compared to a random selection is found. When applied as an objective function in FRODOCK for bound protein-
protein docking on 97 complexes of the ZDOCK benchmark 3.0, DrugScorePPI/FRODOCK finds up to 10% (15%) more high
accuracy solutions in the top 1 (top 10) predictions than the original FRODOCK implementation. When used as an objective
function for global unbound protein-protein docking, fair docking success rates are obtained, which improve by ,2-fold to
18% (58%) for an at least acceptable solution in the top 10 (top 100) predictions when performing knowledge-driven
unbound docking. This suggests that DrugScorePPI balances well several different types of interactions important for
protein-protein recognition. The results are discussed in view of the influence of crystal packing and the type of protein-
protein complex docked. Finally, a simple criterion is provided with which to estimate a priori if unbound docking with
DrugScorePPI/FRODOCK will be successful.
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Introduction

Protein-protein interactions have important implications in

most complex cellular signalling processes [1]. As a consequence,

interfaces of protein-protein interactions are becoming increas-

ingly important as drug targets [2,3]. Several studies pointed to the

existence of hotspot residues that account for most of the binding

free energy in these interfaces [4,5,6,7,8]. These hotspots help

guiding the development of modulators of protein-protein

interactions [9]. For computational hotspot detection, most of

the methods require knowledge of the protein-protein complex

[2,3,10]. Likewise, structural knowledge of protein-protein com-

plexes is valuable for understanding the complex connection

between individual molecules and cell behavior [11]. Compared to

the case of single protein structures, the number of experimentally

determined structures of protein-protein complexes is still very

limited. To overcome this limitation, various protein-protein

docking approaches have been developed for predicting the

structure of protein-protein complexes [12,13,14,15,16,17].

Sampling of possible protein-protein configurations and scoring

each configuration are the two main aspects for successful protein-

protein docking. Whereas the configurational space of two (rigid)

proteins can be successfully sampled in reasonable time, the

reliable identification of near-native protein-protein complex

structures from a set of generated configurations is still a major

challenge [18]. At present, four types of functions to evaluate the

quality of a predicted protein-protein configuration can be

distinguished: I) based on physical force fields [19,20]; II) based

on shape complementary and additional descriptors related to

desolvation or electrostatic interactions [21,22]; III) empirical

functions that are obtained by fitting to experimental data

[23,24,25]; IV) knowledge-based potentials that are derived from

databases of experimentally determined structures [26,27,28,29].

Scoring functions can be further classified into residue-level

potentials [30,31] and atomic potentials [32,33]. Residue-level

(coarse-grained) potentials are computationally advantageous

especially when applied to predict protein-protein complexes

where the binding partners can undergo large conformational

changes [34,35,36]. In contrast, atomic potentials are of higher

resolution and are supposed to be most accurate and specific [37].

Atomic potentials are often knowledge-based; such potentials have

been widely applied to score protein-ligand, protein-RNA, and

protein-DNA interactions [38,39,40]. The reduced steepness of

knowledge-based potentials compared to force field-based or

empirical scoring functions has been recognized as an advantage

in docking [41]. Regarding protein-protein interactions, only a few

knowledge-based potentials have been described so far, including

the contact potential IFACE [32] and two approaches using

information from docking decoys as the knowledge base, the
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decoys-as-a-reference-state approach DARS [33] and the two-step

potential TS [42]. The IFACE potential uses surface fraction

information to define the reference state and is implemented as

objective function in the Fast Fourier Transform (FFT)-based

protein-protein docking program ZDOCK [32]. DARS is a

statistical potential using information from interfaces of incorrect

protein complex formations as an average reference state and is

implemented as objective function in the FFT-based protein-

protein docking program PIPER [43]. Both IFACE and DARS

are used in combination with potentials for shape complementarity

and electrostatics. The TS potentials were trained on protein-

protein docking decoys by linear programming techniques and

have been used as scoring functions [42,44].

We recently developed the knowledge-based scoring function

DrugScorePPI for in silico alanine scanning and hot spot prediction

on given structures of protein-protein complexes (accessible at

http://cpclab.uni-duesseldorf.de/dsppi/) [10]. For this, distance-

dependent pair-potentials were derived from 851 crystallograph-

ically determined protein-protein complexes. DrugScorePPI is

based on the DrugScore approach that has proven successful

already as a scoring and objective function for protein-ligand

[38,45,46,47] and RNA-ligand [39,48] complexes. In part, this has

been attributed to the implicit, well-balanced consideration of

several different types of interactions important for molecular

recognition, such as polar (including hydrogen bonding), charged,

and nonpolar interactions. Obtaining such a delicate balance is

also considered crucial for successfully predicting protein-protein

complexes [43,49,50].

This provided the incentive for us to evaluate the DrugScorePPI

potentials in structure prediction of protein-protein complexes. In

this study, DrugScorePPI was initially used as a scoring function to

evaluate decoys of two non-redundant datasets of 54 protein-

protein complexes by Gray et al. [15]. Subsequently, DrugScorePPI

was used as an objective function in connection with the fast

spherical harmonics-based protein-protein docking algorithm

FRODOCK [14]. To the best of our knowledge, this is the first

time that atomic, distance-dependent, and knowledge-based

potentials are used as the sole objective function (i.e., without

any additional potential terms) in connection with an FFT-based

docking approach, that way combining advantages of both

methods in terms of sampling efficiency and scoring accuracy.

The performance of DrugScorePPI as an objective function was

evaluated in bound and unbound docking on the ZDOCK

benchmark 3.0 [51]. We discuss these results in view of the

influence of crystal packing and the type of protein-protein

complex docked. We too provide a simple criterion with which to

estimate a priori if unbound docking with DrugScorePPI/FRO-

DOCK will be successful.

Materials and Methods

Distance-dependent Pair-potentials and Docking Score
The derivation of the distance-dependent pair-potentials of

DrugScorePPI was described in detail recently [10]. In short, the

same formalism was applied as already used for the DrugScore

and DrugScoreRNA scoring functions for protein-ligand and RNA-

ligand complexes [38,39]. The DrugScorePPI potentials were

derived from 851 crystallographically determined protein-protein

complexes using an in-house mySQL database that contains

structural information of all PDB entries (Grimme, D.; Radestock,

S.; Schmidt, E.; Derksen, S.; Gohlke, H. unpublished results). The

dataset consists of 655 homodimers and 196 heterodimers. In all of

the cases, the complexes had been resolved to at least 2.5 Å. PDB

codes of all complexes used for deriving the potentials are listed in

ref. [29]. Potentials were derived for all DrugScore standard atom

types that occur in the 20 canonical amino acids [38].

Summing over the resulting specific interactions DW(Tp, Tb, dp,b)

between atom p with type Tp of a protein P and atom b with type

Tb of the binding partner B, separated by a distance dp,b, results in

the docking score DW for evaluating a protein-protein complex

configuration (eq. 1). The upper distance for deriving the pair-

potentials was set to 5 Å.

DW ~
X

p[P

X

b[B

DW (Tp, Tb, dp,b) ð1Þ

Contrary to previous work on alanine scanning [10], a scaling of

the pair-potentials did not prove advantageous here. Thus, all

results below were obtained with non-scaled DW(Tp, Tb, dp,b).

Validating DrugScorePPI Potentials as a Scoring Function
Initially, the predictive power of the DrugScorePPI potentials

was assessed in terms of their ability to select native-like protein-

protein complex configurations from datasets of pre-generated

protein-protein docking decoys. Thus, the DrugScorePPI potentials

were evaluated as a scoring function. For this we used two non-

redundant datasets constructed by the Baker group using the

protein-protein docking program RosettaDock [15]. Hence,

results obtained with DrugScorePPI for these complexes can be

directly compared to the validation study by Baker and coworkers

[15]. The first dataset consists of 54 complexes for which 1000

‘‘unbound perturbation solutions’’ have been generated, respec-

tively; the second one consists of 54 complexes for which 200

‘‘unbound docking solutions’’ have been generated, respectively.

Here, ‘‘unbound perturbation solutions’’ refers to complex

structures generated from the binding partners in an unbound

conformation by sampling around the native ligand position;

‘‘unbound docking solutions’’ refers to a complete sampling of the

global search space. All structures of the decoy sets have optimized

side chain conformations, and their energies were minimized to

reduce steric clashes, i.e. the decoy structures are stereochemically

correct. For a more detailed description of the decoy generation

see ref. [15]. Each decoy was rescored according to eq. 1, and the

decoys of one protein-protein complex were ranked according to

the scores. The larger protein (referred to as the receptor) was

considered protein P according to eq. 1, and the smaller protein

(referred to as the ligand) as binding partner B. Rankings for the

‘‘unbound perturbation solutions’’ were evaluated by calculating

the percentage of complexes that have at least one solution, or at

least three solutions, with an all-atom rmsd ,10 Å in the top 5

scoring ranks, respectively. For ‘‘unbound docking solutions’’

complexes were first clustered by a threshold of 2.5 Å using the

kclust algorithm from the AMBER suite of programs [52]. These

clusters were then sorted according to the cluster size with the

largest cluster getting the best rank. Finally, solutions were

obtained considering the best scored solution of each of the

clusters, respectively. The rankings were evaluated by calculating

the percentage of complexes that have at least one solution with an

all-atom rmsd ,5 Å or ,10 Å in the top 10 scoring ranks. These

clustering and ranking criteria are according to the work of Baker

and coworkers [15].

Integrating DrugScorePPI Potentials as an Objective
Function into the Docking Program FRODOCK

FRODOCK is a fast spherical harmonics-based protein-protein

docking tool developed by Garzón et al. [14]. The original

DrugScorePPI in Protein-Protein Docking
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implementation uses potential grids encoding van der Waals,

electrostatic, and desolvation energies to score the predicted

complexes. Accordingly, FRODOCK was extended to use pre-

calculated DrugScorePPI potential grids for approximating the

binding energy upon complex formation DW (eq. 1). For distances

dp,b smaller than the location of the first maximum of a pair-

potential with respect to the origin plus 0.1 Å, a Gaussian

repulsion term with a height of 280.000 at dp,b = 0 Å was added to

the DrugScorePPI pair potentials as described in ref. [47]. This

ensures that repulsive forces act between a protein and its binding

partner at short distances for which no information is available in

the database used for deriving the DrugScorePPI potentials. Each

rectangular potential grid was located at the center of mass of a

receptor. The size of the grid in the {x, y, z} direction was

determined from the maximum difference of the {x, y, z}

coordinates of two atoms plus the upper distance limit of the pair-

potentials of 5 Å. The rotational and translational sampling

resolutions were set to 5.6u (,60.000 rotations) [14] and 1 Å,

respectively.

Validating the DrugScorePPI/FRODOCK Approach
For validating the DrugScorePPI/FRODOCK approach, we

used protein-protein complexes from the ZDOCK benchmark 3.0

prepared by Hwang et al. [51]. The benchmark consists of 124

protein-protein complexes for which bound-bound and unbound-

unbound binding partners are available. For 10 of the complexes

only one of the two binding partners is in an unbound

conformation. Complex predictions were evaluated based on

interface (i_rmsd) and ligand (l_rmsd) backbone root mean square

deviations as well as the fractions of native (fnat) and non-native

(fnot) contacts of interface residues following CAPRI criteria [53].

Based on these parameters, the quality of predictions is classified as

high accuracy (fnat $0.5 and (l_rmsd #1.0 Å or i_rmsd #1.0 Å)),

medium accuracy ((0.3# fnat #0.5) and (l_rmsd #5.0 Å or i_rmsd

#2.0 Å) or (fnat .0.5 and l_rmsd .1.0 Å and i_rmsd .1.0 Å)),

acceptable accuracy ((0.1# fnat #0.3) and (l_rmsd #10.0 Å or

i_rmsd #4.0 Å) or (fnat .0.3 and l_rmsd .5.0 Å and i_rmsd .

2.0 Å)), and incorrect (fnat ,0.1 or (l_rmsd .10.0 Å and i_rmsd .

4.0 Å)) according to ref. [29]. A receptor or ligand residue is

considered in the interface if any of its atoms is within 10 Å of any

atom of the ligand or the receptor, respectively. Interface residue

contacts are defined in the same way but using a distance of 5 Å.

The complexes from the ZDOCK benchmark 3.0 can be grouped

into three categories with respect to conformational changes

occurring between unbound and bound state of the binding

partners: easy (Ca -i_rmsd ,1.5 Å and fnot ,0.4), medium

(1.5 Å,Ca-i_rmsd #2.2 Å, or Ca -i_rmsd ,1.5 Å and fnot .0.4),

and difficult (Ca -i_rmsd .2.2 Å) cases [51]. All proteins were

checked manually for missing or incomplete residues in the native

protein-protein interface. Single missing sidechains were recon-

structed using PyMol [54] choosing the most favourable rotamer

that does not show steric clashes. Two or three sequentially

adjacent residues either missing or being incomplete were

reconstructed using Maestro [55]. 27 benchmark entries missing

in at least one of the two binding partners more than three

sequentially adjacent residues in the native protein-protein

interfaces were skipped (Table S1 in File S1). Thus, our

benchmark finally consists of 97 protein-protein complexes.

Examples for skipped entries are depicted in Figure S1 in File

S1; the missing residues are mostly located in the binding

partner(s) that are in the unbound conformation. It can be

expected that in these cases the docking result will be critically

influenced by the missing residues.

The final benchmark set shares five homologous complexes with

the knowledge base of 851 structures from which the DrugScorePPI

potentials were derived. To test whether this leads to a training

effect on the potentials, we re-derived the DrugScorePPI potentials

from the knowledge base excluding the homologous complexes.

When applied in the evaluation studies, the re-derived potentials

did not lead to significantly different results (data not shown). This

observation is consistent with results from a leave-homologous-

complexes-out cross-validation study when applying the DrugS-

corePPI potentials for in silico alanine-scanning [10]. This points to

the robustness of the derived DrugScorePPI potentials.

Computational Efficiency of DrugScorePPI/FRODOCK
The docking with DrugScorePPI/FRODOCK (without consid-

ering the precalculation of the potential grids) was evaluated with

respect to computational efficiency on three protein-protein

complexes with different sizes (Table S2 in File S1). Using 16

cores on dual CPU compute servers equipped with 2 GHz Intel

Xeon Quadcore CPUs, 24 GB of RAM, and Infiniband

interconnect, a docking run takes ,17 minutes for the small

complex, ,22 minutes for the medium complex, and ,4.5 hours

for the large complex. Using either 8 cores or 32 cores reduced the

computational efficiency because of too little memory in the

former case or communication overhead in the latter case. A

drastic decrease (,13-fold) in the efficiency was observed on going

from the medium system to the large system. This can be

explained by the ,2-fold larger ligand and the ,5-fold increased

search spaced related to the ,1.7-fold difference in the maximum

diameters of the receptors. Compared to the original FRODOCK

implementation, the efficiency of the DrugScorePPI/FRODOCK

combination is ,2.2-fold decreased (Table S2 in File S1). This

difference can be explained by the number of eleven grid maps

used in the case of DrugScorePPI/FRODOCK compared to only

four grid maps in the case of original FRODOCK, resulting in a

larger computational burden for energy evaluations in the former

case.

Results and Discussion

Characteristics of the Distance-dependent Protein-
protein Atom Pair-potentials

The distance-dependent pair-potentials of DrugScorePPI were

derived using the same formalism as already applied for the

DrugScore [38] and DrugScoreRNA [39] pair-potentials for

scoring protein-ligand and RNA-ligand complexes, respectively.

Previously, DrugScorePPI was successfully applied for computa-

tional alanine scanning [10]. Here, we will characterize the

DrugScorePPI pair-potentials with respect to their suitability for

scoring protein-protein complex configurations.

Previous experience indicates that at least 500 interactions (i.e.,

about 10 interactions per distance bin) are required per atom2

atom pair to obtain statistically significant potentials [38,56]. This

requirement is fulfilled for the examples of pair-potentials depicted

in Figure 1 (pair-potential N.pl3-O.co2:2923 interactions; O.3-

O.3:831; C.ar-C.ar: 12833). For a list of all atomtypes considered

in DrugScorePPI see Table S3 in File S1. Over all 121 pair-

potentials derived, the least number of interactions was found for

the potential S.3-N.3 (10), whereas the most interactions were

found for C.3-C.ar (34333). Less than 500 interactions were found

between N.3 and positively charged atomtypes as well as for S.3

and positively or negatively charged atomtypes. However, such

interactions are rather unlikely to occur when evaluating protein-

protein complex configurations, too, and thus should not grossly

affect the scoring results. These results indicate that the knowledge

DrugScorePPI in Protein-Protein Docking
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base of 851 protein-protein complexes for derivation of DrugScor-

ePPI is large enough to yield statistically significant potentials

despite the smaller number of complexes used for deriving

DrugScorePPI than for deriving DrugScore [38]. Two reasons

account for this: first, the number of pair interactions per complex

is much larger in the case of protein-protein complexes than in the

case of protein-ligand complexes due to the larger size of the

binding partners; second, in the case of DrugScorePPI, pair-

potentials do not need to be derived for rarely occurring ligand

atoms such as halogens.

The pair-potentials shown in Figure 1 are representative for

interactions between charged atoms (N.pl3 vs. O.co2; Figure 1A),

polar interactions (O.3 vs. O.3; Figure 1B), and aromatic

interactions (C.ar vs. C.ar; Figure 1C) The respective potentials

from DrugScore and DrugScorePPI show qualitatively similar

shapes but quantitative differences with respect to the minima in

the case of N.pl3-O.co2 and O.3-O.3. As such, for N.pl3-O.co2

interactions both a global minimum (at (d, DW) values of (2.8 Å, 2

4314)) and a local minimum (2.3 Å, 23435) were found in the case

of DrugScorePPI but only a global minimum in the case of

DrugScore (2.8 Å, 25458). Both the global minima reflect the

typical distance for hydrogen bonding including salt bridges [56].

The short distance of the local minimum might be explained by

the formation of tight hydrogen bonding interaction networks in

protein-protein interfaces that is induced by a close packing of the

interface residues [28]. Visual inspection in the database used for

DrugScorePPI derivation confirmed that indeed for many salt

bridges between Asp or Glu and Arg one of the N.pl3-O.co2

interactions is shorter than the other one. Hence, the minima of

the DrugScorePPI potential reflect the ability of proteins to

diversify salt bridge interactions as a result of residue packing.

The O.3-O.3 interactions at the minimum around 2.5 Å are much

more favorable in DrugScorePPI (DW<26434) than in DrugScore

(DW<23961). This is an interesting result because in the case of

protein-protein interactions there are only three residues, Thr, Ser,

and Tyr, that are able to form O.3-O.3 interactions. Regarding

Ser and Thr, there is a need for small residues for tight interface

packing; thus, the multiple polar interactions of Ser and Thr can

appreciably contribute to protein-protein binding. Tyr is one of

the most common hotspot residues in protein interfaces as it can

form aromatic interactions in addition to hydrogen bonds [7].

Finally, C.ar-C.ar interactions (DWDrugScore_PPI = 21023; DWDrug-

Score = 21419) are almost similar in both potentials.

In summary, the DrugScorePPI potentials encode characteristic

determinants of the molecular recognition of proteins, which differ

from those observed in DrugScore pair potentials of protein-ligand

interactions. This indicates that these knowledge-based potentials

do not have a universal character; rather, the respective potential

can be expected to show a high predictive power only when

applied to cases that lie within the scope of the knowledge base

used for its derivation. The generalizability of the potentials is

expected to increase with the size of the knowledge base they are

derived from even if the current knowledge base already yielded

statistically significant potentials (see above). Considering that the

derivation of DrugScorePPI potentials occurs in an automated

manner, this suggests to re-derive a new DrugScorePPI version

once the number of protein-protein complexes has increased

markedly in the PDB. In addition to extending the knowledge base

of native complexes, the knowledge base can also be extended by

considering non-native complexes, i.e., docking decoys for using

DrugScorePPI potentials as a scoring and objective function in

structure prediction of protein-protein complexes. Applying linear

programming, the pair-potentials can then be scaled with the

objective to maximize the gap between scores of native versus non-

native complexes [57].

Scoring of Decoy Sets of Protein-protein Complexes
In a first step, DrugScorePPI was used as a scoring function for

ranking decoys of a non-redundant dataset of 54 targets for which

‘‘unbound perturbation’’ and ‘‘unbound docking’’ solutions have

Figure 1. Distance-dependent pair-potentials of DrugScorePPI

(straight line) and DrugScore [38] (dashed). (A) Charged
interactions between atoms of types N.pl3 and O.co2; (B) polar
interactions between two atoms of type O.3; (C) aromatic interactions
between two atoms of type C.ar. For reasons of comparison, the
potentials were aligned to a value of zero at a distance of 5 Å.
doi:10.1371/journal.pone.0089466.g001
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been generated by Baker and coworkers (Table S4 & S5 in File S1)

[15]. For the ‘‘unbound perturbation’’ dataset, on average 28% of

the generated decoys have an all-atom rmsd ,10 Å from the

native structure (Table S4 in File S1); for the ‘‘unbound docking’’

dataset, this holds for on average 11% of the decoys. More severe,

the ‘‘unbound docking’’ decoy set contains 17 (7) targets for which

no (only one) decoy with an all-atom rmsd ,10 Å was generated

(Table S5 in File S1). For these targets it will be impossible (very

difficult) to identify an acceptable decoy (all-atom rmsd ,10 Å) by

rescoring. Thus, we separately evaluated the rescoring results for

those ‘‘unbound docking’’ decoy sets where at least two acceptable

decoys are available. Considering this subset, on average 19% of

the generated decoys have an all-atom rmsd ,10 Å from the

native structure. This number drops to 0.4% for the subset where

less than two acceptable decoys are available with an all-atom

rmsd ,10 Å from the native structure (Table S5 in File S1).

When scoring the ‘‘unbound perturbation’’ dataset, DrugScor-

ePPI was able to rank at least one (three) solution(s) with rmsd ,

10 Å in the top 5 in 81.5% (57.4%) of the cases (Table 1). Detailed

results are given in Table S6 in File S1. Considering that on

average 28% of the ‘‘unbound perturbation’’ decoys have an all-

atom rmsd ,10 Å, the probability to rank at least one (three)

solution(s) in the top 5 by random selection is 81% (14%). The

latter result shows that DrugScorePPI yields a 4-fold enrichment of

acceptable docking solutions in the top ranks compared to a

random selection. When applied to the dataset of ‘‘unbound

docking’’ solutions, DrugScorePPI was able to rank a solution in

the top 10 with rmsd ,10 Å (5 Å) in 100% (73.3%) of the cases

(Table 1). Detailed results are given in Table S7 in File S1. The

probability to rank a solution with rmsd ,10 Å (5 Å) in the top 10

by random selection is 88% (48%) for the decoy sets containing at

least two acceptable decoys with an all-atom rmsd ,10 Å from the

native structure. For the decoy sets containing less than two

acceptable decoys with an all-atom rmsd ,10 Å from the native

structure this probability is ,1% (,1%). For these cases,

DrugScorePPI yields 25.0% (20.8%). Thus, when compared to

the probabilities for random selection, DrugScorePPI shows

superior performance in ranking acceptable solutions on the top.

Comparing these results to the ones of Baker and coworkers

(Table 1) shows that DrugScorePPI performs slightly inferior in the

case of the ‘‘unbound perturbation’’ dataset but superior in the

case of the ‘‘unbound docking’’ dataset. This result is remarkable

given that the scoring function has been derived based on a

formalism originally established for protein-ligand interactions and

that no tweaking of parameters with respect to scoring protein-

protein complexes has been done. Given the ease with which

DrugScorePPI can be derived, it is worth testing if its predictive

power can be increased further by re-deriving the function on

extended datasets in the future. The result also suggests that

DrugScorePPI should be suitable as an objective function for

protein-protein docking.

Analysis of Binding Energy Landscapes
In order to further analyze the properties of DrugScorePPI, we

investigated the binding energy landscapes of the 54 complexes of

the ‘‘unbound perturbation’’ dataset with 1000 decoys each. A

successful representation of protein-protein interactions should not

only allow a reliable recognition of near-native docking solutions

but should also produce a binding (free) energy landscape that is

smooth as to not impair the efficiency of configurational sampling

during docking [39]. In that respect, funnel-shaped binding (free)

energy surfaces of protein-protein complex formation are expect-

ed, similar to what is known from the field of protein-ligand

docking [58,59,60]. In previous studies, the Spearman correlation

coefficient RS was used as a quantitative measure to determine the

correlation between the rmsd values and the scores of docking

solutions [39,61]. Although not sufficient to comprehensively

define the funnel-shapeness of the energy landscape due to its

high-dimensional character, such a correlation is assumed to be at

least necessary for a funnel to exist. Here, we adopt the same

measure.

In Figure 2 the DrugScorePPI scores for 1000 ‘‘unbound

perturbation’’ decoys of a serine protease/prosegment complex

(PDB-ID 1PPE) and a trypsin/trypsin inhibitor complex (PDB ID

1SPB) are shown as a function of the rmsd with respect to the

native structure. In both cases, a well-defined funnel-shape is

obvious, although in the former case a decoy with rmsd = 7.11 Å is

slightly favored over more near-native solutions. The RS is 0.75

(0.61) for the protease/prosegment complex (trypsin/trypsin

inhibitor complex). When considering all 54 complexes, for 59%

(44%) an RS of at least 0.3 (0.4) was found (Figure S2 in File S1).

These results underscore the reduced steepness of the knowledge-

based DrugScorePPI potentials, which has been recognized as an

advantage in small-molecule/receptor docking studies [39,41].

Using DrugScorePPI as Objective Function for Bound
Protein-protein Docking with FRODOCK

DrugScorePPI was initially used as objective function in

FRODOCK to predict 3D structures of protein-protein complexes

from conformations of the binding partners in the bound state. As

conformational changes of the binding partners are neglected in

this step, this approach allows determining under best conditions

to what extent the objective function/docking tool combination is

able to generate and discriminate (near-)native binding modes.

For our purpose, FRODOCK was adapted such that pre-

calculated DrugScorePPI potential grids can be used as input.

Eleven potential grids (Table S3 in File S1) were calculated using

the larger binding partner as ‘‘receptor’’; configurations of the

smaller binding partner (‘‘ligand’’) were sampled then during

docking. For comparison, docking with the original FRODOCK

implementation was performed, too, applying standard parame-

ters suggested by Garzón et al. [14] except for the step size of the

translational search, which was reduced from 2 Å to 1 Å to

improve the sampling density. For the docking with DrugScorePPI

potential grids, we used the same settings. FRODOCKCLUST

was used to cluster the predicted complex configurations with a

threshold of 5 Å rmsd. For each docking run, of all the best-scored

solutions from each of the clusters, the 2000 top-ranked ones were

finally evaluated with respect to their structural quality. This

quality was assessed following CAPRI criteria (see Materials and

Methods section) [53]. Note that for 11 protein-protein complexes

multiple ligand binding modes need to be considered for

evaluation (Table S8 in File S1). Multiple binding modes were

identified by visual inspection of the original PDB files.

When applied to a subset of 97 bound test cases of the ZDOCK

benchmark 3.0 (see Materials and Methods section), convincing

results were obtained with the DrugScorePPI/FRODOCK com-

bination (Table 2 and Table S9 in File S1). A high or medium

accuracy solution in the top 1, top 10, and top 100 rank(s) was

obtained in 53.1%, 69.8%, and 80.2% of the cases, respectively.

Compared to the original FRODOCK implementation (Table 2

and Table S10 in File S1), DrugScorePPI/FRODOCK led to

docking success rates that are higher by .10% for the top 1 and

top 10 ranks. In particular, DrugScorePPI/FRODOCK is able to

find up to 10% and 15% more high accuracy solutions in the top 1

and 10 predictions, respectively. Interestingly, hardly any accept-

able solution was found; thus, docking solutions were either highly

correct or incorrect.

DrugScorePPI in Protein-Protein Docking
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Antigen-antibody complexes have been found to show major

differences in the interactions compared to other protein-protein

complexes [62,63,64]. Our subset of test cases contains 23 antigen-

antibody complexes. For ten of these complexes, no solution with

at least acceptable accuracy was found in the top 10 for bound

docking with DrugScorePPI/FRODOCK. Ramaraj et al. reported

that Tyr shows the highest abundance of all amino acids in the

paratope-containing surface (PCS) of an antibody and also the

highest presence in the PCS compared to the surface of the whole

antibody [65]. Accordingly, when sorting the top 100 predictions

of a complex by their abundance of Tyr residues in the antibody

interface, the number of failures decreased to seven (three) when

considering the top 10 (20) ranks. These results suggest that it may

be advantageous to derive knowledge-based pair potentials

specifically for antigen-antibody complexes. For five protein-

protein complexes, no near-native solution could be found at all by

DrugScorePPI/FRODOCK: Three of them are antigen-antibody

complexes (see above; PDB-IDs: 1E6J, 1I9R, 2HMI), and two are

other complexes (PDB-IDs: 1GLA, 1I4D). We will discuss these

failures in more detail in the section ‘‘Influence of crystal packing’’.

Finally, when using DrugScorePPI for rescoring the 2000 top-

ranked decoys generated with the original FRODOCK imple-

mentation, a dramatic drop-off in the docking success rate was

observed (Table 2 & Table S9 in File S1). A solution with at least

acceptable accuracy in the top 1, top 10, and top 100 rank(s) was

obtained in only 2.0%, 8.4%, and 50.0% of the cases, respectively.

DrugScorePPI and the FRODOCK scoring function apparently

favor sufficiently different protein-protein complex configurations

as near-native solutions such that rescoring only a subset of all

FRODOCK-generated configurations with another scoring func-

tion fails. In turn, this stresses the importance of a thorough

sampling of complex configurations as a prerequisite for accurate

scoring, which is done implicitly when docking with either the

DrugScorePPI/FRODOCK combination or the original FRO-

DOCK implementation.

Influence of Crystal Packing
Although X-ray crystallography is the most widely used method

for structural investigations of complexes involving biomolecules

[66], there has always been concerns whether the crystalline state

Table 1. Results of scoring decoys from the dataset of Baker and coworkers [15].

Criterion Unbound perturbation[a] Unbound docking[b]

This work Baker and coworkers This work Baker and coworkers

R5Å 2[c] 2[c] 73.3 (20.8) 66.7 (20.8)

R10Å 2[c] 2[c] 100.0 (25.0)[d] 93.3 (25.0) [d]

N10Å 57.4 63.0 2[c] 2[c]

Best rmsd 81.5 83.3 100.0 (25.0) [d] 93.3 (25.0) [d]

[a]‘‘Unbound perturbation’’ dataset. 54 targets were scored with 1000 decoys each. Scoring criteria were applied according to Baker and coworkers: ‘‘N10Å’’ is the
percentage of complexes that have at least three top five decoys with rmsd ,10 Å; ‘‘Best rmsd’’ is the percentage of complexes that have at least one top five decoy
with rmsd ,10 Å. Results from this work and the study by Baker and coworkers are shown.
[b]‘‘Unbound docking’’ dataset. 54 targets were scored with 200 decoys each. To identify the top 10 solutions, the best scored decoys from the top 10 clusters were
considered (see Materials & Methods). Scoring criteria were applied according to Baker and coworkers: ‘‘R5Å’’ (‘‘R10Å’’) is the percentage of complexes that have at least
one solution ,5 Å (,10 Å) in the top 10 decoys. ‘‘Best rmsd’’ is the percentage of complexes that have at least one solution with rmsd ,10 Å in the top 10 decoys.
Numbers not in parentheses refer to the 30 targets for which at least two ‘‘good’’ decoys are available; numbers in brackets refer to the other 24 targets. Results from
this work and the study by Baker and coworkers are shown.
[c]Not determined.
[d]For reasons of comparison with the paper of Baker and coworkers both values are given although they are redundant.
doi:10.1371/journal.pone.0089466.t001

Figure 2. Computed scoring values of decoys from the ‘‘unbound perturbation’’ dataset using DrugScorePPI. (A) Serine protease/
prosegment complex (PDB-ID 1PPE); (B) trypsin/trypsin inhibitor complex (PDB ID 1SPB). The scoring values are given as a function of the rmsd from
the native structure; small rmsd values denote near native-like protein-protein configurations.
doi:10.1371/journal.pone.0089466.g002
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influences structure and dynamics of such complexes [67]. This led

us to investigate to what extent protein-protein docking results are

affected by crystal packing contacts observed for the native

complex structures. For this, we visualized the crystal environment

of a protein-protein complex using Maestro [68] for all cases

where docking with DrugScorePPI/FRODOCK was not successful

in a docking experiment with bound-bound cases. The influence of

crystal packing has been widely ignored so far when preparing

benchmark sets of protein-protein complexes and in protein-

protein docking studies.

In the following, we will discuss four examples where crystal

packing effects had a severe impact on our protein-protein docking

results (Figure 3): I) For the complex of human TGF-beta type II

receptor with TGF-beta3 (PDB-ID 1KTZ), no near-native

solution was found in the top 10 when using the complex structure

from the benchmark set as a reference. Regarding the crystal

packing, the ligand has contacts to two receptor proteins, which

are related by a two-fold rotation axis (Figure 3A). When both

receptor structures were considered for protein-protein docking, a

medium accuracy solution was found on rank 6. Notably, another

crystal structure (PDB-ID 3KFD) already implicitly shows the

effect of the crystal packing [69]. II) For the complex of RAC1-

GDP with the ligand arfaptin (PDB-ID 1I4D), no near-native

solution could be sampled at all. Regarding the crystal packing,

two ligand structures are in contact with each other, and, in

addition, each ligand has contacts to two receptor proteins

(Figure 3B). When both receptor structures were considered for

protein-protein docking, we found a medium accuracy solution on

rank 3. Crystal lattice contacts for RAC have already been

described by the authors that determined the complex structure

[70]. III) For the complex of the amino-terminal domain of the

HIV-1 capsid with human cyclophillin A (PDB-ID 1AK4), no

near-native solution was found in the top 10 when using the

complex structure from the benchmark set as a reference.

Regarding the crystal packing, receptors and ligands share

multiple interfaces: Each receptor structure is in contact with

three other receptor structures, and each ligand binds to a set of

three receptors (Figure 3C). When such a set of three receptors was

considered for protein-protein docking, we were able to find a high

accuracy solution on rank 4. It has already been described by the

authors that several amino-terminal domains of the HIV-1 capsid

associate into planar strips within the crystal consistent with what

is depicted in Figure 3C [71]. IV) For the complex of E. coli IIIGlc

with glycerol kinase (PDB-ID 1GLA), no near-native solution

could be sampled among the top 2000. Interestingly, however, a

solution was identified on the first rank that has medium accuracy

with respect to a structural arrangement that does not result in the

biologically relevant interaction but one originating from crystal

contacts (Figure 3D). This finding reflects that non-specific

protein-protein interactions make use of the same forces that

govern specific recognition in protein-protein complexes [72].

Scoring schemes particularly trained on specific protein-protein

interactions versus non-specific ones could be used as a postfilter

for the DrugScorePPI/FRODOCK output to distinguish such

cases [73].

In summary, these examples reveal that many ‘‘failures’’ in

protein-protein docking can be understood if crystal packing

effects are considered. Conversely, in our view, in the design of

benchmarks for protein-protein docking, such potential influences

should be taken into account, as has been done in the field of

protein-ligand docking for the CCDC/Astex clean set [74]. Over

and above considering the influence of additional, or alternative,

interaction partners due to the crystal packing, one would also

need to investigate whether side chain, loop, or even global

conformations of the binding partners have been influenced by the

crystalline state. Molecular dynamics simulations have been

successfully used in this context to investigate the flexibility of

protein structures prior to docking [75,76,77].

Using DrugScorePPI as Objective Function for Unbound
Protein-protein Docking with FRODOCK

Docking proteins in the unbound conformation is considered

difficult because pronounced conformational changes of the

binding partners can occur upon complex formation that

invalidate the lock-and-key principle underlying rigid protein-

protein docking [78,79,80]. We tested the DrugScorePPI/FRO-

DOCK approach again on the cleaned version of the ZDOCK

benchmark 3.0, now using both protein binding partners in the

unbound conformation (Table 3; Table S11 in File S1). The

quality of the results was assessed as before for bound docking.

Compared to bound docking (Table 2), a sharp drop in the success

rates is observed. First, neither is a high accuracy complex

structure found in the top 100 nor is one generated at all. Second,

complex structures of medium and acceptable accuracy are found

in the top 10 (top 100) in 8.3% (31.3%) of the cases. When only

considering the easy cases (see Materials and Methods section for

the definition), this success rate increases to 11.0% (39.7%) in the

top 10 (top 100).

We noted that in the case of unbound docking the difference

between the number of complexes for which a complex structure

of a given accuracy is generated (‘‘Top 2000’’ column in Table 3)

and respective ‘‘Top 1/10/100’’ columns is considerably larger

than in the case of bound docking (Table 2). This indicates for

unbound docking with DrugScorePPI/FRODOCK that complex

structures of medium and acceptable accuracy can still be

generated in many cases but not identified. In comparison to the

Table 2. Success rates for bound docking using DrugScorePPI/FRODOCK, the original FRODOCK implementation, and rescoring
original FRODOCK results with DrugScorePPI.[a].

Accuracy DrugScorePPI/FRODOCK FRODOCK Rescoring FRODOCK

Top 1 Top 10 Top 100 Top 2000 Top 1 Top 10 Top 100 Top 2000 Top 1 Top 10 Top 100

High 15.6 20.8 22.9 24.0 5.2 5.2 10.4 11.5 0.0 0.0 1.0

Medium 37.5 49.0 57.3 68.8 34.4 53.1 70.8 81.3 1.0 2.1 16.7

Acceptable 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 1.0 6.3 32.3

Totals 53.1 69.8 80.2 93.8 39.6 58.3 82.3 93.8 2.0 8.4 50.0

[a]Docking calculations were performed for a subset of 97 structures of the ZDOCK benchmark 3.0 (see Materials and Methods section). The percentage of complexes is
reported for which at least one solution with the given accuracy was found in the top 1, 10, 100, or 2000 solutions.
doi:10.1371/journal.pone.0089466.t002
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results from bound docking, this suggests that despite its reduced

steepness (see above) DrugScorePPI is still not ‘‘soft’’ enough to

compensate for the missing explicit treatment of protein flexibility

in the docking algorithm. Structural refinement of complex

structures obtained from the docking and re-evaluation with

DrugScorePPI could be a way to overcome this limitation [81]. In

particular, energy minimization- and/or Monte Carlo-based

refinement in internal (dihedral angle) coordinates using a

molecular mechanics force field description of the proteins has

been successfully applied for this [15,82]. In addition, two other

reasons may give rise to the only fair results. First, DrugScorePPI

only evaluates interactions between receptor and ligand atoms that

are ,5 Å apart. Thus, interactions between atoms potentially

being in contact in the native complex will not be considered in the

unbound docking if the conformational changes between bound

and unbound states are too large. Again, this limitation may be

overcome by structural refinement of the initially generated

complex structures. Second, the missing long-range interactions in

DrugScorePPI may also lead to not recognizing encounter complex

configurations, which are generally dominated by electrostatic

interactions [83], and can be in equilibrium with, and mutually

exclusive to, the specific complex [84]. In fact, when performing

Figure 3. Biologically relevant protein-protein complexes and non-specific protein-protein interactions arising from crystal
contacts. The receptor (ligand) in protein-protein complexes provided in the ZDOCK benchmark 3.0 is colored in cyan (green); receptor (ligand)
molecules arising from crystal contacts are colored in white (black). Docking solutions are depicted in magenta. (A) Extracellular domain of the human
TGF-beta type II receptor complexed with TGF-beta3 (PDB-ID 1KTZ). The docking solution was found on rank 6 when both receptor structures were
considered for the docking. (B) RAC1-GDP complexed with ligand arfaptin (PDB-ID 1I4D). The docking solution was found on rank 3 when both
receptor structures were considered for the docking. (C) Human cyclophillin A complexed with the amino-terminal domain of the HIV-1 capsid (PDB-
ID 1AK4). The docking solution was found on rank 4 when a set of three receptor structures were considered for the docking. (D) E. coli IIIGlc
complexed with glycerol kinase (PDB-ID 1GLA). The docking solution was found on rank 1 although only the native receptor was considered for the
docking.
doi:10.1371/journal.pone.0089466.g003

Table 3. Success rates for unbound docking using DrugScorePPI/FRODOCK and the original FRODOCK implementation.[a]

Accuracy DrugScorePPI/FRODOCK[b] DrugScorePPI/FRODOCK[c] FRODOCK[b]

Top 1 Top 10 Top 100 Top 2000 Top 1 Top 10 Top 100 Top 2000 Top 1 Top 10 Top 100 Top 2000

Medium 5.2 6.3 14.6 33.3 6.3 10.4 25.0 49.0 7.3 13.5 29.2 59.4

Acceptable 0.0 2.1 16.7 34.4 0.0 7.3 33.3 33.3 3.1 9.4 17.7 21.9

Totals 5.2 8.3 31.3 67.7 6.3 17.7 58.3 83.3 10.4 22.9 46.9 81.3

[a]Docking calculations were performed for a subset of 96 structures of the ZDOCK benchmark 3.0 (see Materials and Methods section). The percentage of complexes is
reported for which at least one solution with the given accuracy was found in the top 1, 10, and 100 solutions. The ‘‘Top 2000’’ column reports the percentage of
complexes for which at least one solution with the given accuracy was found in the top 2000 solutions. In neither docking approach was a high accuracy solution found.
[b]A global search of ligand configurations around the receptor was performed as in the case of bound docking.
[c]The search space for the knowledge-driven docking was restricted to 10 Å around a central point. For details, see Figure S3 in File S1. The mean is reported for three
independent docking runs. The standard deviation is # 2.2 in all cases.
doi:10.1371/journal.pone.0089466.t003
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the unbound docking with the original FRODOCK implemen-

tation, which uses electrostatic interactions for scoring, complex

structures of medium and acceptable accuracy were found in the

top 10 (top 100) in 22.9% (46.9%) of the cases (Table 3; Table S12

in File S1). This docking accuracy is comparable to that reported

in ref. [14]: for a subset of 76 protein-protein complexes obtained

by excluding all difficult cases from the ZDOCK benchmark 2.0,

an at least acceptable solution was found in the top 20 (top 100) in

30% (51%) of the cases. The docking program ZDOCK version

3.0 considers statistical pair potentials in addition to contributions

due to shape, electrostatics, and desolvation [32]. For this docking

program, a similar docking accuracy of 25% (50%) for the top 20

(top 100) has been reported on the same 76 protein-protein

complexes considering ‘‘hits’’ and ‘‘near-hits’’, i.e., solutions with

an i_rmsd # 4.0 Å similar to the criterion of an at least acceptable

accuracy used here [85].

Regarding that critical residues in protein-protein interfaces can

be identified efficiently, e.g., by employing alanine scanning [86]

or analyzing correlated mutations [87], we probed to what extent

such knowledge helps in improving the identification of at least

acceptable complex structures with DrugScorePPI/FRODOCK.

For this we defined a reference point within 5 Å distance of the

receptor interface and restricted the space of the translational

search for the ligand to 10 Å around this reference point (Figure

S3 in File S1). To minimize the bias by the selected reference point

on the docking results, each docking run was repeated three times

using another randomly selected reference point; in addition, each

reference point must be at least 5 Å away from the other two

points. Other than that, the same docking parameters were used as

for the unbound global docking. An at least acceptable solution is

found now in the top 10 (top 100) in 18% (58%) of the cases

(Table 3; Table S13 in File S1). This amounts to a ,2-fold

improvement in the success rates compared to the global docking.

Analyzing the knowledge-driven docking in more detail, the

success rate for finding an at least acceptable accuracy solution in

the top 10 (top 100) is 20.0% (65.9%) considering only the ‘‘easy’’

and ‘‘medium’’ cases in the benchmark (Figure 4A, B; Table S13

in File S1), i.e., excluding the ‘‘difficult’’ cases where the

conformational changes of the binding partners are .2.2 Å Ca-

i_rmsd (Figure 4C).

For 13 complexes no solution with i_rmsd ,10 Å was found in

the top 2000 predictions by knowledge-driven docking with

DrugScorePPI/FRODOCK, four of which are classified as easy

(PDB ID’s: 1I4D, 1I9R, 1SBB, 2VIS), two as medium (1BGX,

1M10), and seven as difficult (1BKD, 1DE4, 1IBR, 1IRA, 1R8S,

1Y64, 2HMI) cases. Four of these complexes are antigen-antibody

complexes (PDB-ID’s: 1BGX, 1I9R, 2HMI, 2VIS); one of the

complexes has already been discussed above regarding crystal

packing effects (PDB-ID: 1I4D). Visual inspection of the remaining

eight complexes revealed pronounced conformational changes

upon complex formation in terms of loop movements in the

interface of five complexes (PDB-ID’s: 1BKD (Figure 4C), 1DE4,

1IBR, 1M10, 1R8S; 2.1,Ca-i_rmsd,3.7 Å) and large domain

movements for one of the complexes (PDB-ID: 1IRA; Ca-

i_rmsd = 8.4 Å). Such large rearrangements in the protein-protein

interface are apparently out of the scope of our rigid docking

approach using knowledge-based potentials. One way to overcome

this limitation without having to modify the rigid docking

approach is to perform ensemble docking using ensembles of

protein structures deformed along collective degrees of freedom

[81,88,89,90]. For the remaining two complexes we could identify

issues related to the preparation of the benchmark. First, the

complex in PDB-ID 1SBB is given as a one-to-one complex in the

benchmark but the biological assembly assigned by the authors in

the PDB data base is a dimer where each ligand makes interactions

with two receptor molecules. Second, the complex in PDB-ID

1Y64 is also given as a one-to-one complex in the benchmark as

found in the asymmetric unit; however, the most likely biologically

relevant form is a dimeric FH2 ring (being the receptor) that

contacts three successive actin monomers (being the ligands) [91].

Thus, it is not unsurprising that docking these complexes as given

in the benchmark fails.

Estimating when Unbound Protein-protein Docking will
be Successful

The success rate of unbound docking with DrugScorePPI/

FRODOCK is higher for complexes with only small rearrange-

ments (see above). This leads to the question if and how one can

estimate a priori whether unbound protein-protein docking will be

successful; for this, only information on the unbound binding

partners should be used so as to mimic a real-life scenario. To this

end, we applied a method developed by Marsh et al. [92] that uses

the relative solvent accessible surface area (Arel) of an unbound

protein in order to predict the magnitude of binding-induced

conformational changes. Arel is the actual accessible surface area of

a protein divided by the accessible surface area expected for a

folded protein of the same molecular weight. Using this measure

follows the rationale that binding partners in the unbound state

Figure 4. Predictions of unbound protein-protein docking obtained with DrugScorePPI/FRODOCK on the top 10 scoring ranks. (A)
Medium accuracy complex of MT-SP1/matriptase (cyan) and bovine pancreatic trypsin inhibitor (PDB ID: 1EAW). (B) Acceptable accuracy complex of
ribonuclease A (cyan) and a ribonuclease inhibitor. (PDB ID: 1DFJ). In (A) and (B) ligand configurations in the crystal complex are depicted in green,
and predicted ligand configurations are colored in magenta. (C) Bound crystal complex of human H-Ras (cyan) and human SOS-1 (green) (PDB ID:
1BKD) onto which the unbound ligand (orange) was aligned. Due to a large conformational change of a loop in the interface (see black ellipse) the
generation of a near-native structure failed.
doi:10.1371/journal.pone.0089466.g004
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with higher Arel values expose more surface area and adopt more

extended conformations, thus, they are likely to be more flexible

and, hence, show larger conformational changes upon binding

[92]. Indeed Marsh et al. found a linear correlation between Arel

and log(rmsd between the bound and unbound state) with

r2 = 0.64. When computing Arel for those 88 binding partners in

the cleaned version of the ZDOCK benchmark 3.0 where both of

the proteins are in the unbound state, we find a linear correlation

of r2 = 0.49 (p,0.001) with the logarithm of the all-atom rmsd

value with respect to the bound conformation (Figure S4 in File

S1). The same correlation is obtained if the Ca atom rmsd is used

instead. The difference between our results and those from ref.

[92] may reflect a dataset dependence. Note that our dataset set

only contains heteromers because Marsh et al. stated that the Arel

vs. log(rmsd) correlation is weak for homomers [92].

Relating Arel to the results from our knowledge-driven unbound

protein-protein docking, we find that for 80% of the complexes

where the docking failed at least one protein had Arel .1.1 (Table

S14 & Figure S4 in File S1). Along the same lines, if at least one

protein has Arel .1.1, the likelihood to get an at least acceptable

accuracy solution in the top 100 is 48% only (Table S14 in File

S1). In contrast, if both of the proteins have Arel ,1.1, the

likelihood to get an at least acceptable accuracy solution in the top

100 is 85.4% (Table S14 in File S1). Considering this as a binary

classification problem, the Arel criterion discriminates between

successful unbound dockings and unsuccessful ones with a

sensitivity of 85%, a specificity of 100%, and an accuracy of

92% (Figure S5 in File S1). Thus, using the simple measure Arel is

a valuable means for predicting when unbound protein-protein

docking of heteromeric structures with DrugScorePPI/FRO-

DOCK will be successful.

Concluding Remarks
In summary, the distance-dependent knowledge-based DrugS-

corePPI potentials have been evaluated as a scoring and objective

function in structure prediction of protein-protein complexes.

When applied for ranking ‘‘unbound perturbation’’ and ‘‘unbound

docking’’ decoys generated by Baker and coworkers, DrugScorePPI

results in a 4-fold enrichment of acceptable docking solutions in

the top ranks compared to a random selection in the former case,

and a 1.5-fold enrichment (with respect to the R5Å criterion) in

the latter case. Compared to the results by Baker and coworkers,

DrugScorePPI performs slightly inferior in the case of the

‘‘unbound perturbation’’ dataset but superior in the case of the

‘‘unbound docking’’ dataset. When applied as an objective

function in FRODOCK for bound protein-protein docking on

97 complexes of the ZDOCK benchmark 3.0, DrugScorePPI/

FRODOCK finds up to 10% (15%) more high accuracy solutions

in the top 1 (top 10) predictions than the original FRODOCK

implementation. In contrast, when used as an objective function

for global unbound protein-protein docking, only fair docking

success rates are obtained. They improve by ,2-fold to 18%

(58%) for an at least acceptable solution in the top 10 (top 100)

predictions when performing knowledge-driven unbound docking.

These docking success rates are comparable to those of other state-

of-the-art protein-protein docking approaches. Finally, we devised

a highly accurate criterion based on the relative solvent accessible

surface area (Arel) for a priori prediction when unbound protein-

protein docking of heteromeric structures with DrugScorePPI/

FRODOCK will be successful.

Our results are remarkable as DrugScorePPI has been originally

developed for in silico alanine scanning and hot spot prediction on

given structures of protein-protein complexes. So far, no tweaking

of parameters with respect to evaluating protein-protein complex

structures has been done, in contrast to optimization procedures

applied to other scoring functions for protein-protein docking

[14,24,85,93]. This indicates that DrugScorePPI already balances

very well several different types of (short-range) interactions

important for protein-protein recognition. Our analysis of the

unbound docking results suggests that augmenting DrugScorePPI

by additional (long-range) terms, as done in other studies [32,33],

should further improve its power for the structure prediction of

protein-protein complexes.

Supporting Information

File S1 The file DSPPI_PPD_suppinfo_final_correct.pdf contains

additional information to the manuscript explaining datasets,

methods, and results in further details. It consists of 36 pages, 14

tables and 5 figures.
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