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Abstract— The procedure for screening large databases of 
small chemical compounds to select likely drug candidates by 
computational means is very time demanding. Here, we present 
and evaluate a new method for virtual screening (VS) that 
combines the efficiency of spherical harmonic approximations to 
accelerate the rotational part of a docking search with multicore 
and GPU parallelism. To validate these novel parallel 
algorithms, we used standard benchmark cases. The obtained 
results are comparable to those generated via state-of-the-art VS 
docking approximations, but with a considerable gain in 
efficiency. GPU implementation speedups of more than 30-fold 
with respect to a single core CPU were achieved, reducing the 
docking time for a single ligand to only 50 milliseconds. The 
achieved efficiency and the accuracy on standard blind 
benchmarks demonstrate the applicability and robustness of this 
approach.   

Keywords—Drug discovery; Virtual screening; Docking; GPU;  

I.  INTRODUCTION 
The need to develop safe and innovative drugs shifts the 

focus toward improving the early phases of drug discovery. In 
this context, the selection of likely drug candidates from 
extensive compound libraries by computational means 
represents a fast and an especially cost-effective approach. In 
particular, receptor-based virtual screening (VS) is becoming a 
key part of the drug discovery process. VS relies on docking 
algorithms to perform computational screening. Protein-ligand 
docking methods attempt to identify the optimal positions, 
orientations and conformations of a small compound (ligand) 
with respect to a target protein with a known 3D structure 
(receptor). Typically, VS approaches are implemented via a 
two-step process. First, the whole ligand database is filtered 
using efficient but low discrimination docking power 
approximations. Then, the top scoring compounds are passed 
to more accurate and demanding docking screening 
algorithms. At the end of this process, a limited number of 
potential binding compounds (from hundreds to a few 
thousand) are ready to be experimentally tested. There are 
many docking programs currently available (Glide[1, 2], 
AutoDock Vina[3], GOLD[4], ICM[5], MS-DOCK[6], 
VSDMIP[7], VSDocker[8], PhDock[9], FlexX[10], 
Surflex[11], BINDSURF[12]) for implementing this two-step 
protocol, but no single program has yet emerged that 

outperforms all of the others in all cases. Most of these 
programs are able to employ multithreading capabilities on 
multicore machines. Besides, BINDSURF can perform the 
docking process using CUDA devices.  

Despite significant progress in docking technologies, the 
largest challenge to be addressed is to combine highly accurate 
binding predictions with speed and sampling power. Current 
sampling and scoring approaches take from seconds to 
minutes to process a single compound, even at the initial early 
screening step. Thus, the efficiency and accuracy of the 
current approaches must be improved to handle the avalanche 
of new drug targets and the current necessity to perform a 
fully automated database screening of libraries that contains 
millions of compounds. 

Here, we focus on the first and most computationally 
challenging stage of docking, which consists of rigid-body 
orientational sampling of a small ligand with respect to a fixed 
receptor molecule, while a docking scoring function is 
maximized. The 6D sampling space of the relative orientations 
between the ligand and receptor is very large. In fact, more 
than 106 relative poses can be evaluated. Moreover, the 
number of molecules in the chemical libraries that are 
currently used for VS is greater than 106. Thus, a very efficient 
docking tool is mandatory. To ease this computational 
bottleneck, we adapted a procedure to the protein-ligand 
docking problem. Our group previously developed this 
procedure for addressing related docking problems [13, 14]. 
This algorithm, which is based on a suitable parameterization 
of the 3D rotation group with spherical harmonics (SH), 
significantly speeds up docking by accelerating the rotational 
part of the search [15, 16]. This adaptation for protein-ligand 
docking involved deriving new mathematical expressions, and 
hence, it is a novel docking methodology, which we have 
designated FRODRUG. Moreover, to boost the efficiency of 
the VS process even more, we ported this methodology to 
High Performance Computing (HPC) facilities. In this paper, 
we report two parallelization strategies for FRODRUG. One 
version is designed for many core systems/clusters, which is 
based on MPI (Message Passing Interface), and the other is 
applied for GPUs and uses NVIDIA CUDA [17]. We 
discovered that the latter approach provides superior 
efficiency, with speedups greater than 30-fold being achieved 
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with respect to a single-core CPU. The GPU implementation 
of FRODRUG allows a ligand to dock in only 50 milliseconds 
on a NVIDIA GTX 680 graphics processor. This speed makes 
it possible to conduct a virtual screening campaign for one 
million compounds using a single GPU card in slightly more 
than half a day.  

II. METHODS 

The virtual screening process involves prediction of the 
binding conformations of a large database of chemical com- 
pounds to identify possible new drug candidates. Such 
computational predictions are performed using a docking 
algorithm based on the 3D atomic structures of the target 
receptor and the ligands. Because we know the approximate 
location of the binding site of our target protein receptor, we 
can reduce the size of the docking search to a generous box 
around this site. In this box of ~15 x 15 x 15 Å3 (see the 
illustrative example in figure 1), we define several 
translational positions to determine the relative rigid-body 
orientation of mobile ligands while maximizing a scoring 
function. Thus, in our docking algorithm, the three 
translational degrees of freedom (DOF) are simply scanned 
uniformly in the box search, while the remaining three 
rotational DOF will be accelerated, as described below. The 
selection of the sampling of the rotational and translational 
search represented a practical solution that was a compromise 
between exhaustiveness and efficiency. This rotational 
sampling depends on the bandwidth (BW) used in the 
harmonic representation (360º/(BW·2)). The sampling values 
employed were 1 Å and 11.25º (BW=16), which corresponds 
to scanning more than 2,500 translational points and more 
than 10,000 distinct rotations. Thus, 25 million poses will be 
evaluated per ligand. Considering that a VS campaign requires 
the testing of several thousand to a million ligands, the 
efficiency of the docking method is critical.  

A. The docking algorithm 
For protein ligand docking, we adapted a successful 

procedure developed by our group based on spherical 
harmonics for other bioinformatics problems, such as protein-
protein docking [14] and multi-resolution fitting [13]. Briefly, 
the interaction energy of the receptor and ligand molecules can 
be expressed on the unit sphere in terms of spherical harmonic 
functions and their corresponding coefficients, ����(�) and ����(�). Then, the scoring to be maximized during docking 

can be calculated based on the correlation of such interaction 
energy terms. In this way, for a given translation, the 
correlation function for all of the rotations can be calculated 
very rapidly by following an inverse Fourier transform: 

	(
) = ���,
,���� �� ��
� �
��� �����
�

�               (1) 

where 

����� =  � ����(�) � ����(�)��������� � �� � ��                   (2)
�

�
 

The subscripts and superscripts run for the degree and order of 
the SH and �� are precomputed coefficients that define the 
matrix elements of the irreducible representations of the 3D 
rotational group. 

 We tested several types of energy potential, but we found 
optimal results using a simple Lennard-Jones 6-12 potential, 
followed by rescoring with a knowledge-based scoring 
function consisting of distance-dependent pair potentials 
similar to DSX [18]. The details of the energy terms and 
procedures will be given elsewhere.   

B. Virtual screening 
The VS procedure loads every ligand of the 

compound database into FRODRUG, retrieves the results 
and ranks them. The performance of the VS approach relies on 
the docking algorithm as well as the application of the most 
cost-effective data parallel architecture. Splitting an 
exhaustive search into translational and rotational parts is very 
convenient for the parallel design. Efficient rotational searches 
of independent translational scanned points can be computed 
in parallel.  

III. PARALLEL IMPLEMENTATIONS 
We explored two parallelization strategies. To this end, an 

MPI extension was developed to perform docking on either 
CPUs or CUDA devices over heterogeneous clusters. We 
employed asynchronous functions of the MPI API to overlap 
data transferences with computation. This MPI extension 
follows a master/slave architecture, where there is one master 
process that distributes the ligands among the other processes 
and collects the results. The master sends a new ligand while 
the slave is still docking the previous one to avoid idle 
situations. At the end of this process, the master sorts the 
results, and the ligands are ranked according to their docking 
correlations. The highest-scoring ligands with their 
corresponding translational and rotational orientations are then 
saved to disk.  

The GPU implementation is divided into four different 
steps.  

� Integral Kernel: Computes the integral ������ as eq. 
2. 

� Correlation Kernel: Computes correlation volumes, 
i.e., the expression inside within the brackets of eq. 1. 

� FFT Computation: Computes the inverse Fourier 
transform from the correlation volumes. To this end, 

Fig. 1. Illustrative case of the Chk1 kinase (PDB id 2br1). A) The 
translational search points explored by the docking site are plotted as red 
points. Such points have been generate by sampling uniformely (every 
1Å) the docking search box and removing those in which a potential 
ligand deeply penetrates into the receptor or in which the ligand 
molecule is not even in contact with the receptor. B) Superimposition of 
the ligand’s best docking (in blue) pose, as found in a VS search with the 
experimentally observed bound ligand conformation. 
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we employed the cuFFT library [19] provided by 
NVIDIA.  

� Search Kernel: Searches the ligand orientation with the 
highest docking score in the correlation volume 
obtained in the previous inverse Fourier transform 
step.  

 

Some of the optimizations of our kernels are based on the 
warp size. A warp is a group of threads that are executed 
physically at the same time. Its size is a constant that is fixed 
at 32 threads per warp for every CUDA specification. Our 
implementation requires the use of CUDA devices that have a 
computational capability of 2.0 or above (Fermi architecture 
and later) due to the number of registers and threads per block 
that this specification provides. Since the Fermi architecture 
was released, CUDA devices have included a small L1 cache 
on their chips. The size of these caches can be configured per 
kernel at run time such that there are 16 KB or 48 KB on the 
Fermi or 16 KB, 32 KB or 48 KB on the Kepler architecture 
(the default is 48 KB of shared memory). Below, we 
summarize the CUDA implementation of the kernels.  

A. Integral kernel 
This kernel computes the integral (eq. 2) for every 

translational point within the binding site of a given ligand. 
The length of the integrals depends on the bandwidth used 
(BW·(4·BW·BW-1)/3). The integral complex data is 
separated into two arrays, splitting the real and imaginary 
parts to speed up the read/write operations. The storage of the 
integral data is done in a transpose way to optimize the input 
read for the next kernel. 

The process of computing the integral is illustrated in 
figure 2. The left part of the figure shows a block of threads in 
grey that compute data from the first 32 integrals. Each thread 
reads its corresponding part from ����(�) and ����(�) and 
stores the computed integral in shared memory. A 32 x 32 
(+1) block of shared memory is allocated for this purpose. An 
extra column is added to the shared memory block to avoid 
bank conflicts (see figure 3 for details). We choose a 32 x 16 
thread block matching the X-axis with the warp size. The set 
of 32 integrals was computed in two steps because the Y-axis 
only contained 16 units. This arrangement was chosen for 
reasons of optimization because the hardware performed better 
with smaller thread blocks, which results from the amount of 
register per thread reducing the occupancy. On the right side 
of the figure, the process of writing the data to the global 
memory is shown. The warps read the data from the shared 
memory in a column-wise manner and store the data linearly 
in the global memory. This process is again performed in two 
iterations.  

To cover all of the integral blocks, we extended the X- and 
Y-axes to conform to the grid and to process all of the 
translational points. 

B. Correlation kernel  
This kernel performs the operation shown within brackets 

in the main equation (eq. 1). In principle, we will require a 

matrix of 32 x 32 x 32 values. However, because it will be 
used as the input of a complex-to-real Fourier transform, half 
of the volume can be omitted due to “Hermitian” redundancy. 
Moreover, only two quadrants of the volume must be 
computed because the other two quadrants can be mirrored 
based on the symmetry of the harmonic coefficients.  

In figure 4, we can see the configuration selected for the 
thread blocks. As above, we have set a length of 32 threads in 
the X-axis, matching warp size, and 16 threads in the Y-axis. 
Each block includes a shared memory section of 32 x 33 floats 
for storing the correlation data. Again, this extra column 
avoids bank conflicts. The zone indicated in grey corresponds 
to threads of the same warp, which shows that the data is 
written to the shared memory in a column-wise manner. Each 
warp computes the complex value for the same X-index of 32 
different correlation volumes, and this index is determined by 
the Y index of the thread block. Both parts of the complex 
number are computed by the same thread. 

Fig. 2. The figure illustrates the process of generating the integral for 
every translational point. The data for each integral is computed in two 
steps in a row-wise way in shared memory, then it’s transposed before 
it’s written to global memory, also in two steps. 

 
Fig. 3. In the left side we have a shared memory block of 32x32. 
Threads can read data horizontally in parallel as they access 32 different 
banks. Reading a column is done secuentially, as every thread access 
the same bank. Adding an extra column solves the problem, as shown in 
the right side. Threads can read a row or a column in parallel as they 
access always different banks. 
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The Z and Y indexes of the thread block within the grid 
determine which X row of the correlation volumes is 
computed. Figure 5 shows a thread block that fills the X row 
and corresponds to the indexes Z=0 and Y=0 of 32 different 
volumes. This process is performed in two steps. The top side 
of the figure shows the first step, where the thread block stores 
the data for the first 16 volumes. The remaining values are 
stored in the second step, as shown in the bottom of the figure. 
The remaining correlation volumes covered the grid along the 
X-axis. 

C. Search kernel  
The inverse FFT of the complex matrix calculated in the 

previous kernel yields a correlation volume of 32 x 32 x 32. 
This volume stores all of the docking scores, sampling the 
rotational space twice over the bandwidth used, which 
amounts to 11.25º (360º/(16·2)). Within this volume, the 
kernel searches slice-by-slice for the highest correlation 
values, as illustrated in figure 6. We set the thread block size 
to 32 x 32 to cover a single slice of the volume. Interpolating 
the correlation values between the closest neighbors enhances 
the accuracy of each of the high correlation peaks. Moreover, 

only half of the correlation volume has to be scanned due to 
the redundancy of the rotational space, using Euler angles (for 
full coverage, it is sufficient to sample the three Euler angles 
that define a given rotation, from 0-360, 0-180 and 0-360 
degrees, respectively).  

The second step of the search is illustrated at the bottom of 
the figure. Once we obtain all of the high-correlation peaks for 
a slice, a parallel step-wise reduction is performed to find the 
best peak. At the end of this process, a single best docking 
pose will be obtained for every translational point, copied to 
RAM and ranked by the CPU.  

IV. RESULTS 
Blind docking experiments were conducted for the set of 

protein-ligand test cases obtained from the Astex Diverse Set 
[20], which is a published collection of 85 protein-ligand 
crystal structures extracted from the Protein Data Bank and 
specifically selected to evaluate the performance of the 
docking algorithms. Based on the rotated and translated 
versions of these ligands, we determined whether the docking 
results identified the correct binding pocket, as defined by the 
crystal structure of the protein/ligand complex. 

Our results indicated that FRODRUG correctly identifies 
93% (79 out of 85) of the native poses. These results are 
comparable to those obtained with the most widely used 
docking programs. For example, in the original study of the 
Astex benchmark using GOLD [20], a performance of 80% of 
complexes was reported, with an RMSD � 2 Å. A more recent 
version of this program increased the percentage to 93% [21]. 

 
Fig. 6. In first place the slices are scanned one by one to get a 32 x 32 
slice with the best peaks, then a parallel search is done over the slice to 
get the best value. 

 
Fig. 4. Every warp of the thread block computes data from 32 different 
correlation volumes and each warp stores its data in two columns of the 
shared memory block. 

 
Fig. 5. Each thread block stores its data in two steps, storing half of the 
data in each one. The first one is in the top side and the second in the 
bottom.  
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A comparison of the performance obtained with the Glide[1, 
2], ICM[5], PhDock[9], FlexX[10] and Surflex[11] docking 
tools revealed rates of successfully docked poses of 70–90% 
[22]. 

To further test the parallel implementations, several 
standard tests were conducted using different machines with 
the hardware described in TABLE I. A fair comparison of 
such architectures is really hard, however in terms of cost, 
they are around 1,000$, 400$ and 300$ for Xeon, GTX 680 
and i7, respectively.  

The CUDA code of the software was compiled for 
computational capabilities of 2.0 and 3.0 using the NVIDIA 
CUDA 5.0 compiler. The remaining code was compiled to 
take maximum advantage of the capabilities of each processor. 
The i7 uses the SSE4.2 instruction set extension, and the Xeon 
uses the AVX instruction set extension. The library used for 
testing the MPI implementation was MPICH2 1.4.1p1.  

A. Scalability test 
We used the two CPUs to test the scalability of 

FRODRUG. The Xeon E5-2650 has 8 cores and can run up to 
16 threads simultaneously due to HTT (Hyper Threading 
Technology). The i7 950 processor is less powerful, running 
up to 8 threads with HTT. Both figures 7 and 8 show only the 
number of MPI processes that compute ligands; the master 
process is omitted. These figures provide the docking 
execution time and the corresponding speedup, respectively. 
The time indicated is the average time for docking a given 
protein against all 85 ligands. 

Processing a single docking test of the Astex benchmark 
takes 153.2 seconds on average on the Xeon employing a 
single process (figure 7). The required time is reduced to 13.0 
seconds when using 15 processes. On the other hand, the i7 
takes 139.1 seconds on average, using only 1 process, and the 
time is reduced to 35.7 seconds with 7 processes. 

Figure 8 shows that the algorithm scaling is nearly linear 
when using 4 processes or fewer in the Xeon E5-2650. We 
reach a speedup of 11.8 times using 15 processes compared to 
the time required with only 1. The algorithm scales linearly 
with the i7 950 when using 3 processes or fewer for 
computing. The scalability is fairly poor with additional 
processes. The response of this processor is adequate because 
it has only 4 physical cores. Globally, this algorithm scales 
very well in many core systems when hardware limits are not 
exceeded. 

B. Efficiency tests with GPUs 
 The first efficiency test is to run the Astex benchmark on 

the NVIDIA GTX 680 card and to compare the execution 
times with previous CPU results. In this test, the GPU version 
of the algorithm requires an average of 4.6 seconds to dock 85 
ligands in a single protein. Figure 9 shows the speedup 
obtained using the Intel i7 950. The GPU performs 30.5 times 
faster compared to executing the algorithm using 1 process 
with this processor. We also obtained a speedup of 33.6x 
against the CPU version using 1 process with the Intel Xeon 
E5-2650 (figure 10). The efficiency on heterogeneous systems 
increase as the number of MPI processes grows; it is limited 
mainly by the available hardware and the amount of molecules 
to dock. 

We conducted another test to measure the efficiency of the 
parallel docking algorithm. In this test, we checked the 
performance of the docking of the Cyclooxygenase-2 protein 

Fig. 8. Speedup chart of for the Intel i7 from 1 to 7 processes and for 
the Intel Xeon from 1 to 15 processes. 

 
Fig. 7. Execution times for the Intel i7 from 1 to 7 processes and for the 
Intel Xeon from 1 to 15 processes. 

TABLE I   HARDWARE USED FOR TESTING PARALLEL 
FRODRUG.  

Hardware Cores Threads Cache Clock 
Intel Xeon E5-2650 8 16 20 MB 2 GHz 

Intel i7 950 4 8 8 MB 3.06 GHz 
NVIDIA GTX 680 1,536 - * 1.06 GHz 

*THE CACHE MEMORY FOR GPUS WITH A KEPLER (GTX 680) ARCHITECTURE 
CAN BE SELECTED AT RUN TIME FOR EACH KERNEL TO BE 16, 32 OR 48 KB. 
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(PDB id 1cx2) with a database of 13,715 ligands. These 
ligands were taken from the Directory of Useful Decoys 
(DUD) [23]. The docking algorithm selects 2,391 points 
within the binding site. For this test, we employed three 
configurations: the i7 950 CPU using 4 processes (1 master, 3 
slaves), a single NVIDIA GTX 680 card and a two GTX 680 
card setup with the MPI extension over two machines. A 
compilation of the results of this test is shown in TABLE II. 
This table shows both the total time for docking the whole set 
of ligands over the entire binding site and the average time 
that it takes to compute every rotation for any ligand at any 
translational point. This test yields a speedup of 10.7x with a 
single card and 20.5x with two cards compared to the CPU 
version employing 4 processes with the i7 950 processor. 

C. Accuracy test 
We ran all of the test cases of the Astex to assess the 

accuracy of the CPU (Intel i7) and GPU (GTX 680) 
implementations. The result of each blind test is a scored list 
of solutions with their corresponding locations and rotations. 
This list is evaluated by measuring the root mean square 
deviation (RMSD) and the rank of the solutions. The RMSD is 
expressed in Å and measures the distance error between the 
ligand atoms of the docked solutions and the correct solution 
provided by the benchmark. The rank is the position of the 
first correct solution found in the list. A correct solution is 
defined as a ligand with an RMSD that is less than or equal to 
2 Å. 

The correct ligand was found to be within the top 10 
solutions in 94.1% of the cases when using the CPU 
implementation. This number decreased to 92.9% for the GPU 
implementation. This minimal difference resulted because the 

CPU version takes the three best solutions per translational 
point, whereas the GPU version takes only the best solution 
for optimization reasons. The consideration of more peaks 
yields to a more sequential and inefficient GPU search. 

When we examined the RMSD in more detail, the 
difference between platforms was more apparent. Using the 
CPU, 82.8% of the best solutions showed an RMSD below 1 
Å, while the percentage of highly accurate solutions dropped 
to 74.5% with the GPU. The GPU computes the location and 
translation of the ligands slightly less accurately than the CPU.  

V. CONCLUSIONS 
The process of docking millions of ligands against a single 

target macromolecule represents a very demanding 
computational problem. In this paper, we have presented a 
parallel version of a docking algorithm for CUDA devices and 
an MPI extension for exploiting multicore architectures. We 
showed using the MPI version that the scalability of the 
algorithm is very good in this kind of many-core system 
because of the way that it is implemented. We also obtained 
very satisfying results for the GPU version of the algorithm, 
reaching a speedup of up to 10.7x using an NVIDIA GTX 680 
compared to a 4-core Intel i7 950 CPU. This GPU 
implementation allows the evaluation of 106 distinct docking 
poses for a single ligand at the binding site in only 50 
milliseconds. Extrapolating this efficiency into a complete VS 
campaign, our implementation computes the screening of one 
million compounds using a single GPU card in slightly more 
than half a day, while this process takes several days using the 
current state-of-the-art methods on a CPU cluster.  
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