
FRODRUG: a virtual screening GPU
accelerated approach for drug discovery

Santiago García, E. Ramírez-Aportela, J.I. Garzón,
Pablo Chacón

Biological Chemical Physics Department
Rocasolano Physical Chemistry Institute (CSIC)

Madrid, Spain
pablo@chaconlab.org

Antonio S. Montemayor, Raúl Cabido
Computer Science Department

Universidad Rey Juan Carlos (URJC)
Móstoles, Madrid, Spain

Abstract— The procedure for screening large databases of
small chemical compounds to select likely drug candidates by
computational means is very time demanding. Here, we present
and evaluate a new method for virtual screening (VS) that
combines the efficiency of spherical harmonic approximations to
accelerate the rotational part of a docking search with multicore
and GPU parallelism. To validate these novel parallel
algorithms, we used standard benchmark cases. The obtained
results are comparable to those generated via state-of-the-art VS
docking approximations, but with a considerable gain in
efficiency. GPU implementation speedups of more than 30-fold
with respect to a single core CPU were achieved, reducing the
docking time for a single ligand to only 50 milliseconds. The
achieved efficiency and the accuracy on standard blind
benchmarks demonstrate the applicability and robustness of this
approach.

Keywords—Drug discovery; Virtual screening; Docking; GPU;

I. INTRODUCTION
The need to develop safe and innovative drugs shifts the

focus toward improving the early phases of drug discovery. In
this context, the selection of likely drug candidates from
extensive compound libraries by computational means
represents a fast and an especially cost-effective approach. In
particular, receptor-based virtual screening (VS) is becoming a
key part of the drug discovery process. VS relies on docking
algorithms to perform computational screening. Protein-ligand
docking methods attempt to identify the optimal positions,
orientations and conformations of a small compound (ligand)
with respect to a target protein with a known 3D structure
(receptor). Typically, VS approaches are implemented via a
two-step process. First, the whole ligand database is filtered
using efficient but low discrimination docking power
approximations. Then, the top scoring compounds are passed
to more accurate and demanding docking screening
algorithms. At the end of this process, a limited number of
potential binding compounds (from hundreds to a few
thousand) are ready to be experimentally tested. There are
many docking programs currently available (Glide[1, 2],
AutoDock Vina[3], GOLD[4], ICM[5], MS-DOCK[6],
VSDMIP[7], VSDocker[8], PhDock[9], FlexX[10],
Surflex[11], BINDSURF[12]) for implementing this two-step
protocol, but no single program has yet emerged that

outperforms all of the others in all cases. Most of these
programs are able to employ multithreading capabilities on
multicore machines. Besides, BINDSURF can perform the
docking process using CUDA devices.

Despite significant progress in docking technologies, the
largest challenge to be addressed is to combine highly accurate
binding predictions with speed and sampling power. Current
sampling and scoring approaches take from seconds to
minutes to process a single compound, even at the initial early
screening step. Thus, the efficiency and accuracy of the
current approaches must be improved to handle the avalanche
of new drug targets and the current necessity to perform a
fully automated database screening of libraries that contains
millions of compounds.

Here, we focus on the first and most computationally
challenging stage of docking, which consists of rigid-body
orientational sampling of a small ligand with respect to a fixed
receptor molecule, while a docking scoring function is
maximized. The 6D sampling space of the relative orientations
between the ligand and receptor is very large. In fact, more
than 106 relative poses can be evaluated. Moreover, the
number of molecules in the chemical libraries that are
currently used for VS is greater than 106. Thus, a very efficient
docking tool is mandatory. To ease this computational
bottleneck, we adapted a procedure to the protein-ligand
docking problem. Our group previously developed this
procedure for addressing related docking problems [13, 14].
This algorithm, which is based on a suitable parameterization
of the 3D rotation group with spherical harmonics (SH),
significantly speeds up docking by accelerating the rotational
part of the search [15, 16]. This adaptation for protein-ligand
docking involved deriving new mathematical expressions, and
hence, it is a novel docking methodology, which we have
designated FRODRUG. Moreover, to boost the efficiency of
the VS process even more, we ported this methodology to
High Performance Computing (HPC) facilities. In this paper,
we report two parallelization strategies for FRODRUG. One
version is designed for many core systems/clusters, which is
based on MPI (Message Passing Interface), and the other is
applied for GPUs and uses NVIDIA CUDA [17]. We
discovered that the latter approach provides superior
efficiency, with speedups greater than 30-fold being achieved

2014 22nd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

1066-6192/14 $31.00 © 2014 IEEE

DOI 10.1109/PDP.2014.64

594

with respect to a single-core CPU. The GPU implementation
of FRODRUG allows a ligand to dock in only 50 milliseconds
on a NVIDIA GTX 680 graphics processor. This speed makes
it possible to conduct a virtual screening campaign for one
million compounds using a single GPU card in slightly more
than half a day.

II. METHODS

The virtual screening process involves prediction of the
binding conformations of a large database of chemical com-
pounds to identify possible new drug candidates. Such
computational predictions are performed using a docking
algorithm based on the 3D atomic structures of the target
receptor and the ligands. Because we know the approximate
location of the binding site of our target protein receptor, we
can reduce the size of the docking search to a generous box
around this site. In this box of ~15 x 15 x 15 Å3 (see the
illustrative example in figure 1), we define several
translational positions to determine the relative rigid-body
orientation of mobile ligands while maximizing a scoring
function. Thus, in our docking algorithm, the three
translational degrees of freedom (DOF) are simply scanned
uniformly in the box search, while the remaining three
rotational DOF will be accelerated, as described below. The
selection of the sampling of the rotational and translational
search represented a practical solution that was a compromise
between exhaustiveness and efficiency. This rotational
sampling depends on the bandwidth (BW) used in the
harmonic representation (360º/(BW·2)). The sampling values
employed were 1 Å and 11.25º (BW=16), which corresponds
to scanning more than 2,500 translational points and more
than 10,000 distinct rotations. Thus, 25 million poses will be
evaluated per ligand. Considering that a VS campaign requires
the testing of several thousand to a million ligands, the
efficiency of the docking method is critical.

A. The docking algorithm
For protein ligand docking, we adapted a successful

procedure developed by our group based on spherical
harmonics for other bioinformatics problems, such as protein-
protein docking [14] and multi-resolution fitting [13]. Briefly,
the interaction energy of the receptor and ligand molecules can
be expressed on the unit sphere in terms of spherical harmonic
functions and their corresponding coefficients, ����(�) and ����(�). Then, the scoring to be maximized during docking

can be calculated based on the correlation of such interaction
energy terms. In this way, for a given translation, the
correlation function for all of the rotations can be calculated
very rapidly by following an inverse Fourier transform:

	(
) = ���,
,���� �� ��
� �
��� �����
�

� (1)

where

����� = � ����(�) � ����(�)��������� � �� � �� (2)
�

�

The subscripts and superscripts run for the degree and order of
the SH and �� are precomputed coefficients that define the
matrix elements of the irreducible representations of the 3D
rotational group.

 We tested several types of energy potential, but we found
optimal results using a simple Lennard-Jones 6-12 potential,
followed by rescoring with a knowledge-based scoring
function consisting of distance-dependent pair potentials
similar to DSX [18]. The details of the energy terms and
procedures will be given elsewhere.

B. Virtual screening
The VS procedure loads every ligand of the

compound database into FRODRUG, retrieves the results
and ranks them. The performance of the VS approach relies on
the docking algorithm as well as the application of the most
cost-effective data parallel architecture. Splitting an
exhaustive search into translational and rotational parts is very
convenient for the parallel design. Efficient rotational searches
of independent translational scanned points can be computed
in parallel.

III. PARALLEL IMPLEMENTATIONS
We explored two parallelization strategies. To this end, an

MPI extension was developed to perform docking on either
CPUs or CUDA devices over heterogeneous clusters. We
employed asynchronous functions of the MPI API to overlap
data transferences with computation. This MPI extension
follows a master/slave architecture, where there is one master
process that distributes the ligands among the other processes
and collects the results. The master sends a new ligand while
the slave is still docking the previous one to avoid idle
situations. At the end of this process, the master sorts the
results, and the ligands are ranked according to their docking
correlations. The highest-scoring ligands with their
corresponding translational and rotational orientations are then
saved to disk.

The GPU implementation is divided into four different
steps.

� Integral Kernel: Computes the integral ������ as eq.
2.

� Correlation Kernel: Computes correlation volumes,
i.e., the expression inside within the brackets of eq. 1.

� FFT Computation: Computes the inverse Fourier
transform from the correlation volumes. To this end,

Fig. 1. Illustrative case of the Chk1 kinase (PDB id 2br1). A) The
translational search points explored by the docking site are plotted as red
points. Such points have been generate by sampling uniformely (every
1Å) the docking search box and removing those in which a potential
ligand deeply penetrates into the receptor or in which the ligand
molecule is not even in contact with the receptor. B) Superimposition of
the ligand’s best docking (in blue) pose, as found in a VS search with the
experimentally observed bound ligand conformation.

595

we employed the cuFFT library [19] provided by
NVIDIA.

� Search Kernel: Searches the ligand orientation with the
highest docking score in the correlation volume
obtained in the previous inverse Fourier transform
step.

Some of the optimizations of our kernels are based on the
warp size. A warp is a group of threads that are executed
physically at the same time. Its size is a constant that is fixed
at 32 threads per warp for every CUDA specification. Our
implementation requires the use of CUDA devices that have a
computational capability of 2.0 or above (Fermi architecture
and later) due to the number of registers and threads per block
that this specification provides. Since the Fermi architecture
was released, CUDA devices have included a small L1 cache
on their chips. The size of these caches can be configured per
kernel at run time such that there are 16 KB or 48 KB on the
Fermi or 16 KB, 32 KB or 48 KB on the Kepler architecture
(the default is 48 KB of shared memory). Below, we
summarize the CUDA implementation of the kernels.

A. Integral kernel
This kernel computes the integral (eq. 2) for every

translational point within the binding site of a given ligand.
The length of the integrals depends on the bandwidth used
(BW·(4·BW·BW-1)/3). The integral complex data is
separated into two arrays, splitting the real and imaginary
parts to speed up the read/write operations. The storage of the
integral data is done in a transpose way to optimize the input
read for the next kernel.

The process of computing the integral is illustrated in
figure 2. The left part of the figure shows a block of threads in
grey that compute data from the first 32 integrals. Each thread
reads its corresponding part from ����(�) and ����(�) and
stores the computed integral in shared memory. A 32 x 32
(+1) block of shared memory is allocated for this purpose. An
extra column is added to the shared memory block to avoid
bank conflicts (see figure 3 for details). We choose a 32 x 16
thread block matching the X-axis with the warp size. The set
of 32 integrals was computed in two steps because the Y-axis
only contained 16 units. This arrangement was chosen for
reasons of optimization because the hardware performed better
with smaller thread blocks, which results from the amount of
register per thread reducing the occupancy. On the right side
of the figure, the process of writing the data to the global
memory is shown. The warps read the data from the shared
memory in a column-wise manner and store the data linearly
in the global memory. This process is again performed in two
iterations.

To cover all of the integral blocks, we extended the X- and
Y-axes to conform to the grid and to process all of the
translational points.

B. Correlation kernel
This kernel performs the operation shown within brackets

in the main equation (eq. 1). In principle, we will require a

matrix of 32 x 32 x 32 values. However, because it will be
used as the input of a complex-to-real Fourier transform, half
of the volume can be omitted due to “Hermitian” redundancy.
Moreover, only two quadrants of the volume must be
computed because the other two quadrants can be mirrored
based on the symmetry of the harmonic coefficients.

In figure 4, we can see the configuration selected for the
thread blocks. As above, we have set a length of 32 threads in
the X-axis, matching warp size, and 16 threads in the Y-axis.
Each block includes a shared memory section of 32 x 33 floats
for storing the correlation data. Again, this extra column
avoids bank conflicts. The zone indicated in grey corresponds
to threads of the same warp, which shows that the data is
written to the shared memory in a column-wise manner. Each
warp computes the complex value for the same X-index of 32
different correlation volumes, and this index is determined by
the Y index of the thread block. Both parts of the complex
number are computed by the same thread.

Fig. 2. The figure illustrates the process of generating the integral for
every translational point. The data for each integral is computed in two
steps in a row-wise way in shared memory, then it’s transposed before
it’s written to global memory, also in two steps.

Fig. 3. In the left side we have a shared memory block of 32x32.
Threads can read data horizontally in parallel as they access 32 different
banks. Reading a column is done secuentially, as every thread access
the same bank. Adding an extra column solves the problem, as shown in
the right side. Threads can read a row or a column in parallel as they
access always different banks.

596

The Z and Y indexes of the thread block within the grid
determine which X row of the correlation volumes is
computed. Figure 5 shows a thread block that fills the X row
and corresponds to the indexes Z=0 and Y=0 of 32 different
volumes. This process is performed in two steps. The top side
of the figure shows the first step, where the thread block stores
the data for the first 16 volumes. The remaining values are
stored in the second step, as shown in the bottom of the figure.
The remaining correlation volumes covered the grid along the
X-axis.

C. Search kernel
The inverse FFT of the complex matrix calculated in the

previous kernel yields a correlation volume of 32 x 32 x 32.
This volume stores all of the docking scores, sampling the
rotational space twice over the bandwidth used, which
amounts to 11.25º (360º/(16·2)). Within this volume, the
kernel searches slice-by-slice for the highest correlation
values, as illustrated in figure 6. We set the thread block size
to 32 x 32 to cover a single slice of the volume. Interpolating
the correlation values between the closest neighbors enhances
the accuracy of each of the high correlation peaks. Moreover,

only half of the correlation volume has to be scanned due to
the redundancy of the rotational space, using Euler angles (for
full coverage, it is sufficient to sample the three Euler angles
that define a given rotation, from 0-360, 0-180 and 0-360
degrees, respectively).

The second step of the search is illustrated at the bottom of
the figure. Once we obtain all of the high-correlation peaks for
a slice, a parallel step-wise reduction is performed to find the
best peak. At the end of this process, a single best docking
pose will be obtained for every translational point, copied to
RAM and ranked by the CPU.

IV. RESULTS
Blind docking experiments were conducted for the set of

protein-ligand test cases obtained from the Astex Diverse Set
[20], which is a published collection of 85 protein-ligand
crystal structures extracted from the Protein Data Bank and
specifically selected to evaluate the performance of the
docking algorithms. Based on the rotated and translated
versions of these ligands, we determined whether the docking
results identified the correct binding pocket, as defined by the
crystal structure of the protein/ligand complex.

Our results indicated that FRODRUG correctly identifies
93% (79 out of 85) of the native poses. These results are
comparable to those obtained with the most widely used
docking programs. For example, in the original study of the
Astex benchmark using GOLD [20], a performance of 80% of
complexes was reported, with an RMSD � 2 Å. A more recent
version of this program increased the percentage to 93% [21].

Fig. 6. In first place the slices are scanned one by one to get a 32 x 32
slice with the best peaks, then a parallel search is done over the slice to
get the best value.

Fig. 4. Every warp of the thread block computes data from 32 different
correlation volumes and each warp stores its data in two columns of the
shared memory block.

Fig. 5. Each thread block stores its data in two steps, storing half of the
data in each one. The first one is in the top side and the second in the
bottom.

597

A comparison of the performance obtained with the Glide[1,
2], ICM[5], PhDock[9], FlexX[10] and Surflex[11] docking
tools revealed rates of successfully docked poses of 70–90%
[22].

To further test the parallel implementations, several
standard tests were conducted using different machines with
the hardware described in TABLE I. A fair comparison of
such architectures is really hard, however in terms of cost,
they are around 1,000$, 400$ and 300$ for Xeon, GTX 680
and i7, respectively.

The CUDA code of the software was compiled for
computational capabilities of 2.0 and 3.0 using the NVIDIA
CUDA 5.0 compiler. The remaining code was compiled to
take maximum advantage of the capabilities of each processor.
The i7 uses the SSE4.2 instruction set extension, and the Xeon
uses the AVX instruction set extension. The library used for
testing the MPI implementation was MPICH2 1.4.1p1.

A. Scalability test
We used the two CPUs to test the scalability of

FRODRUG. The Xeon E5-2650 has 8 cores and can run up to
16 threads simultaneously due to HTT (Hyper Threading
Technology). The i7 950 processor is less powerful, running
up to 8 threads with HTT. Both figures 7 and 8 show only the
number of MPI processes that compute ligands; the master
process is omitted. These figures provide the docking
execution time and the corresponding speedup, respectively.
The time indicated is the average time for docking a given
protein against all 85 ligands.

Processing a single docking test of the Astex benchmark
takes 153.2 seconds on average on the Xeon employing a
single process (figure 7). The required time is reduced to 13.0
seconds when using 15 processes. On the other hand, the i7
takes 139.1 seconds on average, using only 1 process, and the
time is reduced to 35.7 seconds with 7 processes.

Figure 8 shows that the algorithm scaling is nearly linear
when using 4 processes or fewer in the Xeon E5-2650. We
reach a speedup of 11.8 times using 15 processes compared to
the time required with only 1. The algorithm scales linearly
with the i7 950 when using 3 processes or fewer for
computing. The scalability is fairly poor with additional
processes. The response of this processor is adequate because
it has only 4 physical cores. Globally, this algorithm scales
very well in many core systems when hardware limits are not
exceeded.

B. Efficiency tests with GPUs
 The first efficiency test is to run the Astex benchmark on

the NVIDIA GTX 680 card and to compare the execution
times with previous CPU results. In this test, the GPU version
of the algorithm requires an average of 4.6 seconds to dock 85
ligands in a single protein. Figure 9 shows the speedup
obtained using the Intel i7 950. The GPU performs 30.5 times
faster compared to executing the algorithm using 1 process
with this processor. We also obtained a speedup of 33.6x
against the CPU version using 1 process with the Intel Xeon
E5-2650 (figure 10). The efficiency on heterogeneous systems
increase as the number of MPI processes grows; it is limited
mainly by the available hardware and the amount of molecules
to dock.

We conducted another test to measure the efficiency of the
parallel docking algorithm. In this test, we checked the
performance of the docking of the Cyclooxygenase-2 protein

Fig. 8. Speedup chart of for the Intel i7 from 1 to 7 processes and for
the Intel Xeon from 1 to 15 processes.

Fig. 7. Execution times for the Intel i7 from 1 to 7 processes and for the
Intel Xeon from 1 to 15 processes.

TABLE I HARDWARE USED FOR TESTING PARALLEL
FRODRUG.

Hardware Cores Threads Cache Clock
Intel Xeon E5-2650 8 16 20 MB 2 GHz

Intel i7 950 4 8 8 MB 3.06 GHz
NVIDIA GTX 680 1,536 - * 1.06 GHz

*THE CACHE MEMORY FOR GPUS WITH A KEPLER (GTX 680) ARCHITECTURE
CAN BE SELECTED AT RUN TIME FOR EACH KERNEL TO BE 16, 32 OR 48 KB.

598

(PDB id 1cx2) with a database of 13,715 ligands. These
ligands were taken from the Directory of Useful Decoys
(DUD) [23]. The docking algorithm selects 2,391 points
within the binding site. For this test, we employed three
configurations: the i7 950 CPU using 4 processes (1 master, 3
slaves), a single NVIDIA GTX 680 card and a two GTX 680
card setup with the MPI extension over two machines. A
compilation of the results of this test is shown in TABLE II.
This table shows both the total time for docking the whole set
of ligands over the entire binding site and the average time
that it takes to compute every rotation for any ligand at any
translational point. This test yields a speedup of 10.7x with a
single card and 20.5x with two cards compared to the CPU
version employing 4 processes with the i7 950 processor.

C. Accuracy test
We ran all of the test cases of the Astex to assess the

accuracy of the CPU (Intel i7) and GPU (GTX 680)
implementations. The result of each blind test is a scored list
of solutions with their corresponding locations and rotations.
This list is evaluated by measuring the root mean square
deviation (RMSD) and the rank of the solutions. The RMSD is
expressed in Å and measures the distance error between the
ligand atoms of the docked solutions and the correct solution
provided by the benchmark. The rank is the position of the
first correct solution found in the list. A correct solution is
defined as a ligand with an RMSD that is less than or equal to
2 Å.

The correct ligand was found to be within the top 10
solutions in 94.1% of the cases when using the CPU
implementation. This number decreased to 92.9% for the GPU
implementation. This minimal difference resulted because the

CPU version takes the three best solutions per translational
point, whereas the GPU version takes only the best solution
for optimization reasons. The consideration of more peaks
yields to a more sequential and inefficient GPU search.

When we examined the RMSD in more detail, the
difference between platforms was more apparent. Using the
CPU, 82.8% of the best solutions showed an RMSD below 1
Å, while the percentage of highly accurate solutions dropped
to 74.5% with the GPU. The GPU computes the location and
translation of the ligands slightly less accurately than the CPU.

V. CONCLUSIONS
The process of docking millions of ligands against a single

target macromolecule represents a very demanding
computational problem. In this paper, we have presented a
parallel version of a docking algorithm for CUDA devices and
an MPI extension for exploiting multicore architectures. We
showed using the MPI version that the scalability of the
algorithm is very good in this kind of many-core system
because of the way that it is implemented. We also obtained
very satisfying results for the GPU version of the algorithm,
reaching a speedup of up to 10.7x using an NVIDIA GTX 680
compared to a 4-core Intel i7 950 CPU. This GPU
implementation allows the evaluation of 106 distinct docking
poses for a single ligand at the binding site in only 50
milliseconds. Extrapolating this efficiency into a complete VS
campaign, our implementation computes the screening of one
million compounds using a single GPU card in slightly more
than half a day, while this process takes several days using the
current state-of-the-art methods on a CPU cluster.

REFERENCES
[1] R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren,

J. J. Klicic, D. T. Mainz, et al.�� 	
����
�� �� ����
Approach for Rapid, Accurate Docking and Scoring.
1. Method and Assessment of Docking Accuracy,"
Journal of Medicinal Chemistry, vol. 47, pp. 1739-
1749, 2004.

TABLE II. DOCKING TIMES FOR 13,716 LIGANDS WITH THE
CYCLOOXYGENASE-2 PROTEIN

Method Total time Time per point
i7 950 (4 processes) 2 h 1 m 14 s 221.8 μs
GTX 680 (1 card) 11 m 16 s 20.6 μs
GTX 680 (2 cards) 5 m 53 s 10.8 μs

Fig. 10. The Xeon using 1 process is taken as base at 1x speedup.
Running the CPU algorithm with the same processor with 15 processes
has a speedup of 11.78x, and we reach a speedup of 33.61x with the
GTX 680.

Fig. 9. The i7 using 1 process is taken as base at 1x speedup. Running the
CPU algorithm with the same processor with 7 processes has a speedup
of 3.89x, and we reach a speedup of 30.52x with the GTX 680.

599

[2] T. A. Halgren, R. B. Murphy, R. A. Friesner, H. S.
Beard, L. L. Frye, W. T. Pollard, et al.�� 	
����
�� ��
New Approach for Rapid, Accurate Docking and
Scoring. 2. Enrichment Factors in Database
Screening," Journal of Medicinal Chemistry, vol. 47,
pp. 1750-1759, 2004.

[3] O. Trott and A. J. Olson, "AutoDock Vina: improving
the speed and accuracy of docking with a new
scoring function, efficient optimization, and
multithreading," Journal of computational
chemistry, vol. 31, pp. 455-461, 2010.

[4] G. Jones, P. Willett, R. C. Glen, A. R. Leach, and R.
Taylor, "Development and validation of a genetic
algorithm for flexible docking," Journal of
molecular biology, vol. 267, pp. 727-748, 1997.

[5] R. Abagyan, M. Totrov, and D. Kuznetsov, "ICM—a
new method for protein modeling and design:
applications to docking and structure prediction from
the distorted native conformation," Journal of
computational chemistry, vol. 15, pp. 488-506, 1994.

[6] N. Sauton, D. Lagorce, B. O. Villoutreix, and M. A.
Miteva, "MS-DOCK: Accurate multiple
conformation generator and rigid docking protocol
for multi-step virtual ligand screening," BMC
bioinformatics, vol. 9, p. 184, 2008.

[7] R. Gil-Redondo, J. Estrada, A. Morreale, F. Herranz, J.
Sancho, and A. R. Ortiz, "VSDMIP: virtual
screening data management on an integrated
platform," Journal of computer-aided molecular
design, vol. 23, pp. 171-184, 2009.

[8] N. D. Prakhov, A. L. Chernorudskiy, and M. R.
Gainullin, "VSDocker: a tool for parallel high-
throughput virtual screening using AutoDock on
Windows-based computer clusters," Bioinformatics,
vol. 26, pp. 1374-1375, 2010.

[9] D. Joseph-McCarthy, B. E. Thomas, M. Belmarsh, D.
Moustakas, and J. C. Alvarez, "Pharmacophore-
based molecular docking to account for ligand
flexibility," Proteins: Structure, Function, and
Bioinformatics, vol. 51, pp. 172-188, 2003.

[10] M. Rarey, B. Kramer, T. Lengauer, and G. Klebe, "A fast
flexible docking method using an incremental
construction algorithm," Journal of molecular
biology, vol. 261, pp. 470-489, 1996.

[11] ��� ��� ������ 	�������
�� ������ ���������� �����!���
Molecular Docking Using a Molecular Similarity-
Based Search Engine," Journal of Medicinal
Chemistry, vol. 46, pp. 499-511, 2003.

[12] I. Sánchez-Linares, H. Pérez-Sánchez, J. M. Cecilia, and
J. M. García, "High-Throughput parallel blind
Virtual Screening using BINDSURF," BMC
bioinformatics, vol. 13, p. S13, 2012.

[13] J. I. Garzon, J. Kovacs, R. Abagyan, and P. Chacon,
"ADP_EM: fast exhaustive multi-resolution docking
for high-throughput coverage," Bioinformatics, vol.
23, pp. 427-33, Feb 15 2007.

[14] J. I. Garzon, J. R. Lopez-Blanco, C. Pons, J. Kovacs, R.
Abagyan, J. Fernandez-Recio, et al., "FRODOCK: a
new approach for fast rotational protein-protein
docking," Bioinformatics, vol. 25, pp. 2544-51, Oct
1 2009.

[15] J. A. Kovacs, P. Chacon, Y. Cong, E. Metwally, and W.
Wriggers, "Fast rotational matching of rigid bodies
by fast Fourier transform acceleration of five
degrees of freedom," Acta Crystallogr D Biol
Crystallogr, vol. 59, pp. 1371-6, Aug 2003.

[16] J. A. Kovacs and W. Wriggers, "Fast rotational
matching," Acta Crystallogr D Biol Crystallogr, vol.
58, pp. 1282-6, Aug 2002.

[17] CUDA 5.0 C Programming guide. Available:
http://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html

[18] G. Neudert and G. Klebe, "DSX: a knowledge-based
scoring function for the assessment of protein-ligand
complexes," J Chem Inf Model, vol. 51, pp. 2731-45,
Oct 24 2011.

[19] NVIDIA cuFFT. Available:
https://developer.nvidia.com/cufft

[20] M. J. Hartshorn, M. L. Verdonk, G. Chessari, S. C.
Brewerton, W. T. Mooij, P. N. Mortenson, et al.,
"Diverse, high-quality test set for the validation of
protein-ligand docking performance," J Med Chem,
vol. 50, pp. 726-41, Feb 22 2007.

[21] J. W. Liebeschuetz, J. C. Cole, and O. Korb, "Pose
prediction and virtual screening performance of
GOLD scoring functions in a standardized test," J
Comput Aided Mol Des, vol. 26, pp. 737-48, Jun
2012.

[22] J. B. Cross, D. C. Thompson, B. K. Rai, J. C. Baber, K.
Y. Fan, Y. Hu, et al., "Comparison of several
molecular docking programs: pose prediction and
virtual screening accuracy," J Chem Inf Model, vol.
49, pp. 1455-74, Jun 2009.

[23] N. Huang, B. K. Shoichet, and J. J. Irwin,
"Benchmarking Sets for Molecular Docking," J.
Med. Chem., vol. 49, pp. 6789-6801, 2006.

600

