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Abstract-we propose an extension of the standard model for cell chemotaxis which explicitly 
accounts for the adaptation of the chemotactic response. We show that this model resolves the 
“chemotactic wave paradox” of slime mould aggregation in a natural way. 

1. A CHEMOTAXIS MODEL INVOLVING ADAPTATION 

Cell migration plays a central role in biological pattern formation. A widespread mode of cellular 

movement is (positive) chemotaxis: cells move up gradients in concentration of a chemical, called 

a chemoattractant. Keller and Segel [I] proposed the following expression for the chemotactic 

flux: 

J = -DVn + XnVy, (1) 

where n, y, D and x denote the cell density, chemoattractant concentration, cell diffusion and 

chemotactic coefficients, respectively. Based on (l), the standard model system for cell chemotaxis 
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takes the form 
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nt = p(n) - V . J, (2) 

it = dn, Y) + D,V2x (3) 

where p(n) and q(n,r) denote the cell proliferation and chemoattractant production kinetics, 

respectively, and D, is the chemoattractant diffusion coefficient. This model has been successfully 

applied to a variety of chemotaxis systems [2]. 

For one of the most-studied examples of chemotaxis, however, applicability of (l)-(3) is lim- 

ited. This is the aggregation of amoebae of the cellular slime mould, Dictyostelium discoideum, a 

paradigm model system for biological pattern formation. On the one hand, the form of the chemo- 

tactic drift term in (1) is consistent with experimental data obtained in stationary, monotonic 

gradients of the chemoattractant, CAMP’ [3]. Application of the model (l)-(3) to aggregation 

in situ, on the other hand, leads to a paradoxical result (the so-called “chemotactic wave para- 

dox” [4]). Aggregation is directed by periodic waves of CAMP, travelling from the aggregation 

centre outwards and attracting the cells towards the centre. The concentration profile of a single 

CAMP pulse is nearly symmetric [5]. Thus, the chemotactic velocity profile under the influence 

of such a pulse, x(r)Vr, would also be approximately symmetric, resulting in cell movement op- 

posite to the direction of wave propagation in the wavefront and with the wave in the waveback. 

As amoebae would remain longer under the influence of the waveback than of the wavefront, 

they would show some net translocation in the direction of wave propagation, away from the 

aggregation centre. Experimental measurements in situ demonstrate that amoebae move in fact 

only in the wavefronts and remain more or less stationary in the wavebacks [4,6]. Thus, the 

chemotactic cell response cannot solely be determined by the local CAMP gradient. 

It is well known that the chemotactic machinery of slime mould cells, as well as many other 

chemotactic organisms, adapts to a given stimulus [7]. Th e molecular mechanisms of adaptation 

involve the desensitization of an element of the chemotactic signal transduction pathway by the 

chemotactic signal, followed by resensitization upon withdrawal of the chemoattractant. The 

chemotactic coefficient x will, therefore, depend on some measure of cellular sensitivity towards 

the chemoattractant, o, that is, x = X(Q). If the characteristic times for the adaptation reac- 

tion and the change in chemoattractant concentration are of comparable magnitude, the basic 

model (l)-(3) is not sufficient to describe the chemotactic response. It must incorporate the time 

dynamics of the sensitivity variable CL This is the case with slime mould aggregation, where both 

characteristic times are roughly of the order of 1 min [7]. In the following, we show that such an 

extension of the basic model can resolve the “chemotactic wave paradox” in a natural way. 

To derive an equation governing adaptation, we need to be more specific about the underlying 

mechanisms. Although they are not completely understood in the case of slime mould chemotaxis, 
it is reasonable to assume that an adapting element of the chemotactic pathway (probably the 

CAMP cell surface receptor and/or associated G-protein) can be found in two conformations, 

active, R, and inactive (desensitized), D [7]. Binding of CAMP favours the R + D transition 

(desensitization), and generally also affects resensitization, D + R, that is, 

R D. 
f+g) 

f- (7) 

We now identify the sensitivity variable cr with the fraction of the active component per cell, 

CY = R/RT, where R T = R + D = constant. By the law of mass action, the adaptation rate per 

cell is 

f(a,r) = -f+(r)o + f-(7)(1 - o). (4) 

Neglecting diffusion of the active component within the cell, its flux has only a convective contri- 
bution, aJ. The mass balance for the extracellular concentration of the active component takes 

‘Cyclic adenosine 3’5’-monophosphate. 
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the form 

(ncr)t = nf(a, y) - v . (cd). (5) 

Aggregating amoebae do not proliferate and their death rate is negligible, that is, p(n) = 0 in (2). 

Combining (2) and (5), we have the following equation for a: 

a,=f(a,y)-;.vcx 
We can imagine that an appreciable chemotactic response requires a minimal fraction of the 

adapting component to be in the active state. On the other hand, for a large active fraction of the 

component, the response will not increase linearly with a: but, instead, show some “saturation.” 

This can be accounted for by a chemotactic coefficient of the form 

am 
x=qLpn+& m > 1, (7) 

where xc and A are positive constants. Equations (2) and (6), together with (l), (4) and (7) 

model the motile response of a population of amoebae, capable of chemotactic adaptation, to an 

imposed spatio-temporal chemoattractant pattern, y(z, t). 

2. MODEL ANALYSIS 

We shall show that the model equations support cell movement towards the aggregation centre, 

that is, opposite to the direction of CAMP wave propagation. For simplicity, we consider (2) 

and (6) on a one-dimensional spatial domain [0, I], and far from the aggregation centre, where 

the curvature of the chemoattractant waves becomes negligible. Introducing (l), (4) and (7) into 

equations (2) and (6), these take the form 

where cell density, CAMP concentration, time and length have been scaled by characteristic 

values no, ys, to and (xc~atc)-‘/~, respectively. For the adaptation kinetics, we use the kinetic 

expression derived for CAMP receptor adaptation in [8], namely f+(y) = (1 + ~y)/( 1 + y), 

f-(Y) = (L1+ J52w)I(l+ CY), where K, Li, L2 and c are positive parameters. The parameter p 

which, in a crude sense, determines the rate of adaptation, ranges between 0.3 and 1.2 for the 

different parameter sets analyzed in [9] (f or a characteristic time of to = 10 min). 
Instead of considering the chemoattractant production kinetics in detail, we simply impose 

a symmetric travelling wave in y with speed v, $5, t) = r(ll: + wt). As we are not concerned 

with boundary effects, the boundary conditions are chosen as follows: y(O) = y(l) = 7, ~~(0) = 

rZ(l) = 0, a(O) = o(1) = f_(r)/(f+(“U.) + f_(T)) = Cr and nZ(0) = nZ(l) = 0, where 7 is the rest 

concentration of CAMP. That is, the wave does not reach the boundaries during an “integration 

experiment,” and cells do not leave the domain. 

Available experimental data from other amoeboid cells suggest that S = D/xc70 < 0.01 [lo], 

and, as we shall see below, variations in cell density are very small. Thus, we can simplify 

equations (8)-(g) by neglecting the diffusion terms (6 = 0). Now (8)-(g) decouple, and o(z,t) 

can be obtained by solving (9). The characteristics of equation (8) (with S = 0), given by 

g = x(cl(z, t))Yz(G t) = w(z, t), (10) 

then yield the required information, as they describe the (average) cell paths in the chemoat- 
tractant landscape, where ZU(Z, t) is the velocity of cell migration. Finally, we can expect that, 
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Figure 1. Active receptors, o(z), cell velocity, W(Z), and cell paths, r(t), under the 
influence of a travelling CAMP pulse; (a) p = 60, (b) p = 0.6, and (c) p = 0.006. 
Direction of propagation, half-width and position of the CAMP pulse in the z-frame 
are indicated by direction, length and position of the arrows; the concentration profile 
is modelled according to (51, u = 260pm/min. Parameter set C from [9] was used 
for the adaptation kinetics; the broken line for (Y(Z) indicates the quasi-steady state 
profile, corresponding to /J + co. For /I = 0.6 cells only move in the wavefronts, and 
consequently their net translocation is opposite to the direction of wave propagation 
(essentially the same result is obtained for 0.3 < ,u < 1.2). Contrast this with (a) and (c), 
which illustrate the “chemotactic wave paradox.” The chosen dimensional value of the 

chemotactic coefficient, xo = 10 cm2/M-s, which compares favourably with experimental 
values for leukocytes [lo], yields the cell velocity observed experimentally. 

after an initial transient, QI and n will take the form of travelling waves with speed w. Hence, we 
introduce the independent travelling wave variable z = II: + vt. With suitable scaling of y, the 

travelling wave equation for a(z) takes the form 

( cAmaJa,Y) + 1) Q’ + E [(f+(r) + f-(r)b - f-(4] = 0, (Y~~asz+xkx3, (11) 

where ’ E &, and the small parameter E = we/v x 0.1 is the ratio of typical cell velocity, we, to 

wave speed. 

The travelling cell density profile is given explicitly by 

n(z) = 
7202, 

2, + w(z). (12) 

As w < U, the variations in cell density will be very small, in agreement with experimental 

observations [ll]. 
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Determining the adaptation profile a(z) from (11) is the key step of the analysis, yielding in 

turn both the cell path and the cell density profile, from (10) and (12), respectively. Equation (11) 

is a regular perturbation problem as E -+ 0, and its solution can be sought in the form a(z) = 

@J(Z) +KX1(z) fE2cY2(Z) +-... The (dominant) O(1) term is given by 

4 + ;{ [f+hW + f-(Y(Z))]Qo - f-(W) = 07 (13) 

which has the solution QO(Z) = dfexp { - EF(z)} J_“, Ef_ (r(t)) exp { EF(<)} dJ, where F(z) = 

s” [f+(r(<)) + f-(r(E))] d& Th us, CYO(Z) is solely determined by the adaptation kinetics; the 

higher order terms account for the effect of convection. It can be seen from (13) that the effective 

rate of cell adaptation is given by p/v, that is, the reaction rate over wave speed. 

If the adaptation kinetics were either very fast (II >> 1) or very slow (p < l), we would have 

from (ll), to a first approximation, QI = f_(r)/(f+(~) + f_(r)) and LL = CU, respectively. In both 

cases, the model equations reduce to the standard model with x = x(y) obeying a “receptor law” 

(see, e.g., [2]) and x = constant, respectively. As discussed above, both of these cases will yield 

net cell movement away from the aggregation centre. The interesting behaviour can be expected 

to occur on the intermediate time scale, p = O(1). This is illustrated in Figure 1. It can be 

clearly seen that for p = 0.6, cells move in the gradient of the wavefront, desensitize and remain 

stationary in the waveback. Responsiveness is recovered before the next CAMP pulse arrives. 

3. CONCLUSION 

When the characteristic times of the cell adaptation kinetics and of the changes in chemoat- 

tractant concentration are of the same magnitude (in our case P/U = U(l)), qualitatively new 

phenomena can occur which cannot be captured by the standard chemotaxis model (l)-(3). In 

particular, adaptation provides cells with a “short-term memory” for chemoattractant concen- 

trations. This allows slime mould amoebae to distinguish between front and back of symmetric 

chemoattractant waves and to choose their migration direction opposite to the direction of wave 

propagation. To investigate the relationship between CAMP signalling and motile response, we 

will combine the chemotaxis-adaptation model with a model of CAMP signalling; this will result 

in an integrated description of the aggregation process. 
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