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Abstract Normal mode analysis (NMA) was introduced in 1930s as a framework to
understand the structure of the observed vibration-rotation spectrum of several small
molecules. During the past three decades NMA has also become a popular alternative
to figuring out the large-scale motion of proteins and other macromolecules. How-
ever, the “standard” NMA is based on approximations, which sometimes are unphysi-
cal. Especially problematic is the assumption that atoms move only “infinitesimally”,
which, of course, is an oxymoron when large amplitude motions are concerned. The
“infinitesimal” approximation has the further unfortunate side effect of masking the
physical importance of the coupling between vibrational and rotational degrees of
freedom. Here, we present a novel formulation of the NMA, which is applied for finite
motions in non-Eckart body-frame. Contrary to standard normal mode theory, our
approach starts by assuming a harmonic potential in generalized coordinates, and tries
to avoid the linearization of the coordinates. It also takes explicitly into account the
Coriolis terms, which couple vibrations and rotations, and the terms involving Chris-
toffel symbols, which are ignored by default in the standard NMA. We also compu-
tationally explore the effect of various terms to the solutions of the NMA equation of
motions.

J. Pesonen (B)
Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen aukio 1), 00014 Helsinki,
Finland
e-mail: janne.pesonen@helsinki.fi

K. O. E. Henriksson
Department of Physics, University of Helsinki, P.O. Box 43 (Pietari Kalmin katu 2), 00014 Helsinki,
Finland

J. R. López-Blanco · P. Chacón
Department of Biological Physical Chemistry, Rocasolano Physical Chemistry Institute, CSIC,
Serrano 119, 28006 Madrid, Spain

123



J Math Chem

Keywords Normal modes · Curvilinear coordinates · Non-Eckart frame ·
Coriolis coupling · Vibration-rotation Lagrangian · Non-Euclidean metric ·
Finite displacements · Christoffel symbol · Equations of motion

1 Introduction

Normal mode analysis (NMA) was introduced in 1930s by Wilson and co-workers
as a framework to understand the structure of the observed vibration-rotation spec-
trum of several small molecules [1]. Due to its relative simplicity in implementation,
it achieved popularity and became the tool of the trade for researchers working on
theoretical molecular spectroscopy. Anharmonic effects were included by modifying
the theory somewhat (see e.g., Ref. [2]). During the past three decades NMA has also
become a popular alternative to figuring out the large-scale motion of proteins and
other macromolecules (see some recent reviews in Refs. [3–6], and check a recent
software tool for NMA in internal coordinates in Ref. [7]). There, the aim is to reduce
numbers of degrees of freedom by a judicious choice of the shape coordinates. For
example, the protein large-scale motion is to a large extent determined by the torsion
angles only [8] (and the number of active torsion coordinates can be far less than
3N − 6). This lead Go and co-workers [9,10] to further develope NMA as a complete
mathematical framework for harmonic motions in dihedral angle space.

The basic assumption of NMA is that the potential V of the system varies qua-
dratically with the shape coordinates, and the kinetic energy T of the system varies
quadratically with the velocities (or generalized momentas, if Hamiltonian formula-
tion is used) about a given minimum energy conformation. Perhaps as a reflection of its
historical origins, NMA is usually performed in linearized internal coordinates (see,
e.g., Refs. [11–18]), and not in the true geometrically defined internal coordinates.
The rotational motions are almost always separated out from the internal (vibration)
motions using an Eckart body-frame [19–25]. However, some of the approximations
behind the “standard” NMA are unphysical. Especially problematic is the assumption
that atoms move only “infinitesimally”. This very idea is an oxymoron when large
amplitude motions are concerned. The “infinitesimal” approximation has the further
unfortunate side effect of masking the physical importance and the mathematical impli-
cations of the coupling between vibrational and rotational degrees of freedom—The
Coriolis coupling is not generally zero outside the reference configuration, and the
very definition of linearized shape coordinates actually depends on the choice of
the body-frame.

Here, we present a novel formulation of the NMA. It is aimed specifically to describe
finite motion of molecules. Contrary to standard normal mode theory, our approach
starts by assuming a harmonic potential in generalized coordinates, and tries to avoid
the linearization of the coordinates. This means that the terms involving Christof-
fel symbols, which are ignored by default in the standard NMA, are included to the
equations of motion. We have chosen to use an non-Eckart body-frame, which means
that the Coriolis coupling terms are also explicitly included to kinetic energy. The
theory developed here is also compared to the methods presented by Wilson et. al.
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[1,26], originally developed in the 1930s for small molecules, and later popularized
and improved by Go et al. for the modeling of the motions of large biomolecules [10].

The main purpose of the present contribution is to understand the physical conse-
quences of the mathematical structure of different NMA approximations rather than
evaluate in detail their computational implementations. Especially, we account for the
effects of non-Euclidean metric, which one encounters explicitly in the present cur-
vilinear approach, and also implicitly in the “standard” NMA, when finite amplitude
motions are considered (as opposed to “infinitesimal” motions). This problematics
seems to be so far largely neglected in the existing litterature. We also computa-
tionally explore the effect of various terms to the solutions of the NMA equation of
motions. For example, we test how well is the total energy or angular momentum
preserved over the trajectories produced as the solution to normal mode equations,
and how much do the trajectories differ when NMA is done in linearized instead of
curvilinear coordinates.

2 Equations of motion

The Euler-Lagrange equations of motion in general curvilinear coordinates {qi }
are [27]

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, (1)

Now, q̇i is a generalized velocity, and the Lagrangian is

L = T − V = 1

2

∑
i j

gi j q̇i q̇ j − V . (2)

and the metric tensor is given by

gi j =
N∑
α

mα

∂xα
∂qi

· ∂xα
∂q j

. (3)

where xα is the position vector of the particle α in an inertial (laboratory) frame, and
mα is its mass. The resulting equations of motion are

∑
j

gi j q̈ j +
∑

jk

�i jk q̇ j q̇k + ∂V

∂qi
= 0, (4)

where

�i jk =
N∑
α

mα

∂xα
∂qi

· ∂2xα
∂q j∂qk

. (5)
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is the Christoffel symbol of the first kind [28].
Often, the quantities in Eq. (4) are interpreted as follows: The diagonal element gii

of the metric tensor represent the inertia associated with the i th degree of freedom,
and the off-diagonal element gi j reflects the (possible) non-orthogonality of the two
degrees of freedom i and j , resulting in a contribution to the acceleration q̈ j . The
�i j j q̇2

j terms represent the centrifugal effect on the i th degree of freedom by the j th
generalized velocity, and the �i jk q̇ j q̇k terms represent the Coriolis effect induced by
the j th and kth generalized velocities. However, this interpretation is formal at best
rather than physical, and it is not completely in accordance with the practice followed
in theoretical molecular spectroscopy, where only those terms containing mixed ori-
entational and shape coordinates merit the name Coriolis contribution (compare to
Ref. [22]).

3 Harmonic potential

The potential V of a free molecule is a function of the displacements in shape coordi-
nates

�si = si − s(e)i , (6)

where s(e)i denotes the equilibrium value of coordinate si . The shape coordinates are
{si }, by definition, invariant in all rigid motions of the molecule. The potential is
required to be harmonic in the (displacement) coordinates, i.e., of the form

V = 1

2

∑
i j

fi j�si�s j . (7)

Any potential V can be used for normal mode calculations provided it is first truncated
and/or approximated as harmonic. The simplest way to do this is to evaluate

fi j = ∂2V

∂si∂s j

∣∣∣∣
e

(8)

at the (local) minimum energy conformation, denoted by the subscript (e), and subse-
quently use the potential given by Eq. (7). Note that computation of fi j scales O(N 4)

when the potential V has an infinite range. If the potential is restricted to some finite
range, the computation scales as O(N 3). This computational burden can be signifi-
cantly further reduced to O(N 2) by employing recursion relationships described in
seminal papers of Go and coworkers [29,30].

With this potential the equations of motion become

∑
j

gi j q̈ j +
∑
j,k

�i jk q̇ j q̇k +
∑

j

fi j�s j = 0. (9)
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where qi is either a rotational angle �i (e.g., an Euler angle) or �si . By setting
gi j = miδi j and �i jk = 0 and replacing qi with the Cartesian coordinates the corre-
sponding equations for usual Cartesian dynamics are recovered. In general �i jk �= 0
for curvilinear coordinates, so this problem is not as easily solved as the Cartesian
counterpart.

4 Normal mode calculation

4.1 Eigenequation

For the time being we ignore the Christoffel symbol, and introduce another set of
coordinates {Qi } through a linear coordinate relation

qi =
∑

j

Ai j Q j (10)

The equations of motion (without the Christoffel symbol) in these new coordinates
can be expressed in the matrix form as

AT gAQ̈ + AT fAQ = 0, (11)

where g = [gi j ] and f = [ fi j ] are square matrices, Q = ∣∣Q j
)

is a column vector, and
the superscript T implies transpose. Because the potential energy depends only on the
shape coordinates, all those entries fi j of the matrix f are zero, in which either i or j
(or both) index a orientational degree of freedom.

Manipulation of Eq. (11) gives

Q̈ + A−1g−1fAQ = 0. (12)

By using the trial solution

Q j (t) = a j sin
(
ω j t

) + b j cos
(
ω j t

)
(13)

which implies1

Q̇ j (t) = ω j a j cos
(
ω j t

) − ω j b j sin
(
ω j t

)
(14)

and

Q̈ j (t) = −ω2
j a j sin

(
ω j t

) − ω2
j b j cos

(
ω j t

) = −ω2
j Q j (t) (15)

1 Given the initial values of the coordinates {qi } and the corresponding velocities {q̇i }, the appropriate
constants

{
a j , b j

}
can be evaluated by the procedure explained in detail in Appendix B (or vice versa, the

appropriate initial values can be calculated from the given coefficients).
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Eq. (12) can be written in a normal form as

A−1g−1fA = 	2 (16)

where the diagonal matrix 	2 contains the mode frequencies squared, ω2
i . The first

Ns diagonal elements of the matrix 	2 differ from zero, and the remaining three are
zero. Then, one obtains the eigenvalue problem

(g−1f)A = A	2 (17)

from which the matrix A can be solved (its columns are the eigenvectors of g−1f).
It is explicitly assumed in the normal mode calculation that the elements of the

metric tensor gi j , and consequently, the coefficients Aai are constant. Without this
approximation the normal mode frequencies ωi would depend on the amplitudes of
the vibrations. Therefore it is tacitly understood that the variable metric tensor g is
replaced by the constant g0, in which the shape coordinates si are fixed to their refer-
ence values s(e)i and the rotational angles �i are fixed to their initial values �i |t0 at
the time t = t0. Hence, the eigenvalue problem reads as

(g−1
0 f)A = A	2 (18)

To emphasize that rotational angles are set to their initial value, we use the subscript
0 in g, although the initial value si |t0 of the shape coordinate si at t = t0 need not

coincide with its reference value s(e)i (i.e., molecule can be deformed at the t = t0).2

4.2 Matrix A

Because the matrix element
[
g−1

0 f
]

i j
is zero if j indexes an orientational degree of

freedom, it follows that the matrix g−1
0 f has the structure

g−1
0 f =

⎡
⎢⎢⎢⎢⎢⎢⎣


 
 
 · · · 
 0 0 0


 
 
 · · · ... 0 0 0

 
 
 · · · 
 0 0 0
...

...
...

. . .
... 0 0 0


 
 
 · · · 
 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(19)

where orientation angles are now indexed from Ns + 1 to Ns + 3 (Ns is the number
of active shape coordinates), and the (possibly) non-zero entries of the (Ns + 3)× Ns
sub-block are denoted by a star 
. It follows therefore that the matrix A has the form

2 For now on, h0 or h|0 refers to the value of a quantity h, when the rotational angles are set to their initial
value, and the shape coordinates are fixed to their reference values.
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


 
 . . . 
 0 0 0

 
 . . . 
 0 0 0
...

...
. . .

...
...

...
...


 
 . . . 
 0 0 0

 
 . . . 
 
 
 



 
 . . . 
 
 
 



 
 . . . 
 
 
 


⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

where the first Ns columns are the eigenvectors of the non-zero frequency normal
modes, and the last three columns are the eigenvectors of the zero-frequency normal
modes. Hence, as expected, shape coordinates are mapped to the non-zero frequency
normal modes

�si =
Ns∑

j=1

A�si Q j Q j (21)

but the orientational angles are mapped to all normal modes

�i =
Ns+3∑
j=1

A�i Q j Q j (22)

For simplicity, here an element of A is labeled by the coordinates it is associated with.
This is the expected result—under any coordinate transformation, which preserves
the nature of coordinates, shape coordinates are mapped to shape coordinates, but the
orientational angles are generally mapped to both the new orientational angles and
shape coordinates.

It must be emphasized that A is really determined by the above procedure only up
to a “normalization”. Here, it is chosen so that the equation

g−1
0 = AAT (23)

holds true. In other words, A is now the positive “square root” of the g−1
0 . Also, as can

be seen straightforwardly, it maps g0 to a unit matrix 1 via the congruent transformation

AT g0A = 1 (24)

and f to

AT fA = 	2 (25)

This particular choice of A does not affect the eigenvalue problem A−1g−1
0 fA = 	2.

Nor does it change the general form of the matrix AT fA – It has the structure
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AT fA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 . . . 0 0 0 0
0 λ2 . . . 0 0 0 0
...

...
. . .

...
...

...
...

0 0 . . . λNs 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)

where λi > 0.
It depends on the particular numerical algorithm whether the resulting A has this

desired form. A general procedure of normalizing any A, which obeys Eq. (16), is
presented in Appendix A.

4.3 On invariants

Let us now inspect the trajectories of the atoms, which result from the solution of
the NMA equation of motion. The total momentum P = ∑

α mα ẋα is obviously con-
served, because arbitrary changes in {si } and {�i } do not change the center of mass X.
This comes as no surprise, since P is a constant of motion for all conservative systems.

The total energy E = T + V should also be invariant for a conservative system.
Now,

T = 1

2

∑
α

mα ẋ2
α = 1

2

∑
α

mα

∑
i j

∂xα
∂qi

· ∂xα
∂q j

· q̇i q̇ j = 1

2

∑
i jkl

gi j Aik A jl Q̇k Q̇l

(27)

and

V = 1

2

Ns∑
i jkl

fi j Aik A jl Qk Ql (28)

or, in the matrix form,

2E = Q̇T AT gAQ̇ + QT AT fAQ (29)

By evaluating the above equation at the reference conformation, it would be tempting
to say that the total energy equals

∑Ns
i ω2

i

(
a2

i + b2
i

)
/2. However, this is true only in

the reference conformation—the upper left Ns × Ns sub-block of AT gA is not diago-
nal in an arbitrary conformation. Hence, the total energy, calculated directly from the
trajectories of the atoms, is not a constant of motion (although the amount of variation
depends on a particular problem, and E may stay almost constant). The magnitude
of the non-conservation of E in the normal mode trajectories in a torsion space of a
the ribosomal protein is numerically explored in Sect. 7. It can be shown by a specific
numerical example (Sect. 7) that the total angular momentum
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L =
∑
α

mαxα × ẋα (30)

is not a constant of motion over the trajectories produced as a solution to NMA equa-
tions. This reflects again the fact that the normal mode trajectories are not strictly
speaking physical, although they can be excellent approximations.

5 The Christoffel symbol

Since the evaluation of ∂xα/∂qi scales as O (N ) for a fixed value of i , as does the eval-
uation of ∂2xα/∂qi∂q j for a fixed value of i and j , it follows that the cost of the (brute
force) numerical evaluation of the Christoffel symbol �i jk scales as O

(
N 4

)
, or to be

more precise, O
(
N 3

A N
)
, where NA is the number of active or variable coordinates

(i.e., those coordinates which are not rigidly fixed). Hence its numerical evaluation is
quite expensive. We now explore the effect of including the Christoffel symbol to the
original equations of motion.

In order to decouple the equations of motion, the Christoffel symbol �̄i jk (written in
terms of the new normal coordinates Qi ) should vanish. According to tensor calculus
[28] the Christoffel symbol in Q space can be written in q space as

�̄i jk =
∑
rst

�rst
∂qr

∂Qi

∂qs

∂Q j

∂qt

∂Qk
+

∑
rs

grs
∂qr

∂Qi

∂2qs

∂Q j∂Qk
. (31)

Instead of simply setting �̄i jk to zero, one could express qi as a quadratic polynomial

qi =
∑

j

Ai j Q j +
∑

jk

Bi jk Q j Qk (32)

in the normal coordinates, and select the constants Ai j , Bi jk so that �̄i jk
∣∣
0 =

�̄i jk
∣∣{{

s(e)i

}
,
{
�i |t0

}} vanishes. Now,

�̄i jk
∣∣
0 =

∑
rst

�rst |0 Ari As j Atk + 2
∑
rs

grs |0 Ari Bs jk = 0 (33)

Multiplying with A−1
iv and summing over i we get

0 =
∑
rst

�rst |0 δrvAsj Atk + 2
∑
rs

grs |0 δrvBsjk

=
∑

st

�vst |0 Asj Atk + 2
∑

s

gvs |0 Bsjk (34)
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Multiplying with
[
g−1

]
iv

∣∣
0

and summing over v we get

0 =
∑
stv

[
g−1

]
iv
�vst

∣∣∣
0

Asj Atk + 2
∑

s

δis Bs jk

=
∑
stv

[
g−1

]
iv
�vst

∣∣∣
0

Asj Atk + 2Bi jk (35)

We then have

Bi jk = −1

2

∑
stv

[
g−1

]
iv
�vst

∣∣∣
0

Asj Atk (36)

or, by introducing the Christoffel symbols of the second kind,

Bi jk = −1

2

∑
st

�
(i)
st

∣∣∣
0

Asj Atk (37)

The Christoffel symbol of the second kind can be written as

�
(i)
jk =

N∑
α=1

(∇xαqi
) · ∂2xα
∂q j∂qk

(38)

which offers both theoretically and computationally feasible way of evaluating �(i)jk

∣∣∣
0
.

Notice that adding the quadratic term
∑

jk Bi jk Q j Qk does not affect the normal

mode calculation—It contributes neither to the Hessian f̄i j nor to the metric tensor ḡi j

at the reference conformation. However, the potential energy becomes up to quartic
in Qi , i.e.,

V (with CS) = 1

2

Ns∑
i

ω2
i Q2

i + 1

2

Ns∑
i jklm

fi j
(

Aik B jlm + A jk Bilm
)

Qk Ql Qm

+1

2

Ns∑
i jklmn

fi j Bikn B jlm Qk Ql Qm Qn (39)

which means that for a given values of {Qi } the value of V (with CS) is different than
that of V (without CS). The similar reasoning applies also for the value of kinetic
energy T (with CS)—It in general differs from T (without CS) . Furthermore, not all
the coefficients B�si Q j Qk vanish for j = Ns + 1, Ns + 2, Ns + 3. Hence inclusion
of the Christoffel symbols to the normal equations of motion mixes the shape coor-
dinates {�si } with the rotational coordinates {�1,�2,�3}. From the physical point
of view this is unwanted, since shape coordinates should always be mapped to shape
coordinates, not to rotational coordinates, although the converse need not be true.
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6 Body frame and its changes

It is customary to describe motions of atoms in a molecule by introducing a concept of
the instantaneous reference configuration. It refers to the instantenous positions

{
c′
α

}
of atoms in a (hypothetical) rigid molecule, which can merely rotate. Because rota-
tions preserve distances, inter-vector angles, and directed volumes, the inner products
c′
α · c′

β and the box products c′
α · c′

β × c′
γ are constants, which depend only on the

reference geometry of the molecule. In reality, the molecule can of course also deform.
It is important to understand that the instantenous value of the set of rotational angles
{�1,�2,�3} at the time t is the same for both the actual (deforming) molecule and its
reference configuration (while the shapes are of course different). We must also care-
fully distinguish between the initial value and the reference value of a given quantity.
For example, while the reference value s(e)i of the shape coordinate si is constant (and
may, but need not, equal to si |t0 ), the reference value of the rotational angle is equal to
the instantenous value of �i , so it is variable and it in general differs from the initial
value �i |t0 .

The orientation of the instantaneous reference configuration is described by the ori-
entation of the body frame {u′

1,u′
2,u′

3} (i.e., an orthonormal vector triplet attached to
the molecule) with respect to some constant orthonormal frame {u1,u2,u3}, referred
as the laboratory frame, i.e.,

u′
i = R†ui R (40)

The time dependent rotor [31] R (t) is fully parametrized by three angles {�1,�2,�3}
(such as Euler angles). The instantaneous reference positions

{
c′
α

}
are related to a set

of constant vectors {cα} by the same rotation,

c′
α = R†cαR (41)

It is customary to decompose the nuclear position yα = xα − X measured from the
center of mass X as a sum

yα = c′
α + dα (42)

where dα is the displacement of the atom α from the instantaneous reference position
(see Wilson et al. [1]). If the molecule is rigid (i.e., does not deform), then dα = 0 and
yα = c′

α at all times. The instantaneous reference vectors
{
c′
α

}
and the displacement

vectors {dα} are illustrated in Fig. 1 for a triatomic molecule. The bond-z body-frame
(in which the instantaneous axis of rotation u′

3 is parallel with the bond between the
atoms 1 and 3) is indicated. The numerical evaluation of the instantaneous values of
c′
α and dα is described in Appendix D.

It should be emphasized that the decomposition of yα = c′
α + dα to the displace-

ment dα and the moving reference position c′
α is not unique, but it (implicitly) depends

on the choice of the body-frame through the rotor R.
In order to see the possible effect of the body-frame change {u′

1,u′
2,u′

3} →
{u′′

1,u′′
2,u′′

3} on the normal modes, it is advisable to consider it as the coordinate
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Fig. 1 A snapshot of a triatomic
molecule, and the body-frame
associated with it. Notice that
for this particular choice of the
body-frame, the axis u′

3, the
instantaneous reference position
c′

1 and the inter particle position
vector r31 (also shown in the
picture) are always parallel

transformation {{si }, {�′
i }} → {{si }, {�′′

i }}, in which the three rotational angles {�′
i }

are transformed to another set of rotational angles {�′′
i }. The single (double) prime(s)

indicates that the {u′
1,u′

2,u′
3} ({u′′

1,u′′
2,u′′

3}) is the body-frame. By using the chain rule
of derivation, we can write

f′′ = J0f′JT
0 (43)

g′′
0 = J0g′

0JT
0 (44)

where

Ji j = ∂q ′
j

∂q ′′
i

(45)

is the element of the Jacobian matrix J of the coordinate transformation {{si }, {�′
i }} →

{{si }, {�′′
i }}, which is induced by the change in the body-frame {u′

1,u′
2,u′

3} →
{u′′

1,u′′
2,u′′

3}. J0 is the value of J evaluated by setting shape coordinates to their refer-
ence values and the orientational coordinates to their intial values, and JT

0 signifies the
transpose of J0. The left-hand side of the normal mode equation g′′−1

0 f′′ = A	2A−1

(where it has been re-arranged to a form, in which the unknown quantities to be solved
are on the right hand side) can be written as

g′′−1
0 f′′ =

(
JT

0

)−1
g′−1

0 J−1
0 J0f′JT

0 (46)

or

g′′−1
0 f′′ =

(
JT

0

)−1
g′−1

0 f′JT
0 (47)

Evidently, the two products g′−1
0 f′ and g′′−1

0 f′′ are similar, so their eigenvalues and
eigenvectors do not depend on the choice of the body-frame. Starting with a given
potential V (s1, s2, . . .),both the equations g′−1

0 f′ = A	2A−1 and g′′−1
0 f′′ = A	2A−1
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Table 1 The first five non-zero
eigenfrequencies ωi for protein
1AB3, when the orientational
angles are (a) included, and (b)
excluded

Mode Eigenfrequency (fs−1)

(a) (b)

1 5.8507 × 10−4 5.3266 × 10−4

2 7.7745 × 10−4 2.3495 × 10−3

3 9.9830 × 10−4 3.9234 × 10−3

4 1.2310 × 10−3 1.8527 × 10−2

5 1.4476 × 10−3 2.5289 × 10−2

… … …

(or rather g′−1
0 f = A	2A−1 and g′′−1

0 f = A	2A−1, as the Hessians are identical) will
result the same normal frequencies ωi and (relative) amplitudes.

It is emphasized that the above similarity relation holds generally only when the
rotational degrees of freedom are included in the calculation. Although the Hessian
involves only the vibrational degrees of freedom (i.e., the entries involving rotational
degrees of freedom are zero), at least some elements in the metric tensor, which couple
rotational and vibrational degrees of freedom differ from zero, even in the reference
conformation, unless one uses an Eckart body-frame (See Sect. 6.1). Then the result-
ing set of eigenmodes contains three eigenfrequencies which are zero. In practice, the
resulting non-zero modes may differ significantly from the modes obtained when one
takes only the vibrational degrees of freedom into account. This is demonstrated in
Sect. 7, Table 1. It should be emphasized that the normal modes derived in the absence
of orientational coordinates are not physically meaningful unless an Eckart frame is
used.

6.1 Eckart condition

If the body-frame is determined from the Eckart condition [19–24]

N∑
α=1

mαc′
α × yα =

N∑
α=1

mαc′
α × dα = 0 (48)

then all the Coriolis terms

gsi� j =
N∑
α

mα

∂xα
∂si

· ∂xα
∂� j

(49)

vanish in the reference conformation (but not necessarily in other conformations).
While explicit analytical formulas of Eckart axes are not known for large molecules
(apart from planar molecules that is, see Ref. [32]), the rotation matrix associated
with an Eckart frame happens to be the matrix that minimizes the root mean square
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deviation (RMSD) of the resulting conformation from the reference conformation by
rotating the molecule rigidly, and it can be found straightforwardly [33].

7 Test case

The theory developed above was tested on the ribosomal protein S15 from Thermus
Thermophilus, cataloged with PDB code 1AB3 at the RCSB Protein Databank. This
protein consists of a single chain containing 88 residues. The backbone torsion angles
φ,ψ and side-chain torsion angle χ (collectively denoted from now on as {φi } for
simplicity of notation) in each residue—when applicable—were used as degrees of
freedom, together with the three orientational angles {�1,�2,�3} (defined in terms
of a bond-z body-frame, which is defined by the coordinates of three atoms). This
resulted in a total of 177 degrees of freedom. All calculations were carried out using
the previously developed methodology [34,35] as implemented in the computer code
tod.

The atomic interaction potential is a harmonic Cartesian potential:

V = 1

2

∑
αβ

Fαβλ
2
αβ (50)

where

λαβ = ∣∣rαβ ∣∣ − r (e)αβ = ∣∣xβ − xα
∣∣ − r (e)αβ (51)

For simplicity, put Fi j = 1.0 × 10−3 eV/Å2. The Hessian is now

fi j = ∂2V

∂φi∂φ j

∣∣∣∣
e

=
∑
αβ

Fαβ
∂

∂φi

(
λαβ

∂λαβ

∂φ j

)∣∣∣∣
e

=
∑
αβ

Fαβ
∂λαβ

∂φi

∂λαβ

∂φ j

∣∣∣∣
e

(52)

where

∂λαβ

∂φi
= r̂αβ · ∂rαβ

∂φi
(53)

Eigenmodes were calculated for two cases. In case (a) the overall orientational degrees
of freedom were included, and in the unphysical case (b) they were not. A comparison
of the lowest modes, shown in Table 1, indicates the modes are not identical in these
cases. All modes calculated in case (a) are shown in Fig. 2.

The dynamics was also compared in the presence and absence of the quadratic term
�i jk q̇ j q̇k in the equation of motion. The distribution of all the constants Ai j and Bi jk

is shown in Figs. 3 and 4, respectively. From the figures it is clear that most elements
are clustered around zero, without being exactly zero or even “infinitesimally” close
to zero. Since Bi jk gives a quadratic contribution to the degrees of freedom qi , this is
sufficient to change the dynamics when the Christoffel symbol is included. Note that
when only a1 differs from zero, then Q1(t) = a1 sin(ω1t) by Eq. (13). In that case,
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Fig. 3 Plot of the distribution of the elements Ai j (u stands for the atomic mass unit, or Dalton,

1.660538782(83)× 10−27 kg)

when using the Christoffel symbol qi = ∑
j Ai j Q j + ∑

j,k Bi jk Q j Qk ∼ O(a2
1) by

Eq. (32), but when leaving it out qi = ∑
j Ai j Q j ∼ O(a1). The difference in behavior

of the displacement is therefore sensitive to the prefactor of the single excited mode.
If it is much smaller than one, the effect of Christoffel symbols becomes neglible.

The initial values of the coordinates and their velocities were determined by setting
the ai and bi values (and not by specifying intial values for {si } and {ṡi }). By the
equipartition theorem every degree of freedom, both kinetic and potential, contributes
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a term kB T/2 to the total energy E , which is given by Eq. (29). The time average over
one period is independent of the mode frequencies,

〈E〉 =
∑

i

ω2
i

2
(a2

i + b2
i ) = NskB T (54)

For the simplicity of comparison, the coefficients bi = 0 are set to zero for all i . This
implies that the molecule is initially in the undeformed state (i.e., �si = 0 for all i).
The initial rates of change were then determined from the ai solely. If only the single
mode i is excited, this results in ai = √

2K B T /ωi . The corresponding distribution of
the intial torsional velocities is presented in Fig. 5 for the temperature of T = 300 K.

In order to quantify the impact of the Christoffel symbol one may directly compare
the resulting different motion of the protein. One possible measure for the difference
between the two cases—with and without the Christoffel symbol—is the root-mean-
square deviation

RMSD =
√√√√ 1

N

N∑
α=1

(
xα − x′

α

)2 (55)

Here N is the number of atomic positions in the protein, xα is the position of atom
α when the motion is generated using the Christoffel symbol, and x′

α is the position
of atom α when the motion is generated without it. The calculated RMSD is shown
in Fig. 6 during a full period, for an initially undeformed molecule at a T = 300 K,
using single modes (a) i = 1, (b) i = 2, and (c) i = 3.
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molecule is initially undeformed and at a T = 300 K

The Torsion Angle RMSD is defined as

TARMSD =
√√√√ 1

Nφ

Nφ∑
i=1

(
φi − φ′

i

)2 (56)
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Fig. 7 a Torsion Angle RMSD and b Orientational Angle RMSD during one period of oscillation, using
a normal mode frequency of ω1. The molecule is initially undeformed and at a T = 300 K

Here Nφ is the number of torsion angles, φi is the torsion angle i when the motion is
generated using the Christoffel symbol, and φ′

i is the torsion angle i when the motion
is generated without it. The Orientational Angle RMSD is defined in a similar fash-
ion, but it only concerns the three orientational angles {�1,�2,�3}. The calculated
TARMSD and OARMSD values are shown in Fig. 7 during a full period. Values of
a1 = √

2K B T /ω1, b1 = 0 and ai = bi = 0 for i �= 1 were used with T = 300 K.
Again the difference in the dynamical behavior is neglible.

It can be interfered from these graphs that although the detailed dynamics with
and without the Christoffel symbol differs, such differences depends crucially on the
amplitude. For illustrative modes of Fig. 6, maximal divergences found at maximal
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Fig. 8 Total energy E = T + V , calculated directly from the trajectories of the atoms, when a the lowest
b the two lowest vibrational normal modes are excited. The molecule is initially undeformed and at a
T = 300 K

sinus amplitudes (π/2 and 3π/2) were around 30 × 10−3 Å, so the difference in this
case is rather small. Similar observations can be made by looking to torsional and rota-
tional space (Fig. 7), where the difference of the detailed dynamics with and without
the Christoffel symbol is small.

The total energy E and the magnitude |l| of the total internal angular momentum
l = ∑

α mαyα×ẏα (where yα = xα−X) are plotted in Figs. 8 and 9, respectively. Both
quantities are calculated directly from the trajectories of the atoms and two cases are
depicted: (a) the lowest and (b) the two lowest vibrational normal modes are excited
(the molecule is again in T = 300 K and initially at a undeformed state, i.e., bi = 0
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α mαyα × ẏα , calculated directly from

the trajectories of the atoms, when a the lowest b the two lowest vibrational normal modes are excited. The
molecule is initially undeformed and at a T = 300 K

for all i). As can be clearly seen, both quantities vary during the period of the normal
motion, but the scale of variation is small. Omitting the Christoffel symbols in the
original equation of motion results in less variation in of E (which is almost constant
over the trajectories obtained as a solution to the NMA calculation) than including
them. On the other hand, keeping the Christoffel symbols in the original equation of
motion results in less variation in |l| than omitting them.

Finally, we compare the trajectories produced by the curvilinear normal mode cal-
culation to those produced as a result of the linearized version pioneered by Wilson
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et al. in the 1930s, and later popularized by Go et al. for the modeling of the motions
of large biomolecules. The eigenvalues (frequencies) and eigenvectors in the linear
and curvilinear NMA calculation are identical, but the trajectories produced by these
two approaches differ. This is due to the fact that the shape coordinates {s̄i } in linear
NMA are not equal to their geometrically defined counterparts {si } in the curvilinear
NMA. One measure of the deviation of the trajectories resulted as the solution to cur-
vilinear NMA and linear NMA is the root-mean-square deviation of the corresponding
displacements

DRMSD =
√√√√ 1

N

N∑
α=1

(
dα − d̄α

)2
(57)

along, say one period of the lowest vibrational normal mode. DRMSD is obviously
equal to the root-mean-square deviation of the atomic positions, as c′

α is the same in
the both cases. In the above equation, dα is the displacement resulted by the curvilinear
NMA calculation, and

d̄α =
Ns∑

i j=1

ξ (α)si
A�si Q j Q j (58)

is the displacement resulted from the corresponding linear NMA when the Christof-
fel symbols are omitted from the equations of motion (and ξ (α)si

= ∂xα/∂si |e is the
reference value of the tangent vector associated with the particle α and curvilinear
shape coordinate si at the time t). See Appendix D for instructions how to evaluate
the reference values of tangents and displacements in practice. As can be seen from
Fig. 10, the trajectories resulted from linear NMA calculation for our particular test
system deviate slightly from the trajectories obtained as a result of the corresponding
curvilinear NMA calculation. The choice of using linear NMA instead of curvilin-
ear one alters the resulting trajectories by a factor 1.3 more than the exclusion of the
Christoffel symbols from the curvilinear calculation. A short review of the Lagrangian
linear NMA, in which the relevant key features are clarified, and some new proofs are
derived is given in Appendix C.

8 Conclusion

We have presented a more general alternative to the commonly used Eckart-frame
NMA. Here, the orientational degrees of freedom must be included to obtain valid
eigenfrequencies from Eq. (18), as shown in Table 1. Although the detailed dynamics
with and without the Christoffel symbol is initially the same, differences appeared
when moving along the modal curvilinear coordinates. We have also shown that the
trajectories obtained as solution to NMA calculation (both in the absence and presence
of the Christoffel symbol in the equations of motion), do not keep the total energy or
the total angular momentum constant.
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Fig. 10 The root-mean-square deviation of the nuclear displacements resulting from linear v.s. curvilinear
normal mode calculation (without the Christoffel symbol). Only the lowest mode is excited. The molecule
is initially undeformed and at a T = 300 K

The theory is also compared to the linearized version popularized by Wilson et al.
in the 1930s, and later popularized and improved by Go et al. for the modeling of
the motions of large biomolecules. Although the eigenvalues (frequencies) and eigen-
vectors produced by the linear and curvilinear NMA calculation are identical, the
trajectories produced by these two approaches differ. This is due to the fact that the
shape coordinates in linear NMA are not equal to their geometrically defined coun-
terparts in the curvilinear NMA.
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A Normalization of A

Each of the first j = 1, 2, . . . , Ns columns (i.e., the eigenvectors of g−1
0 f associated

with the non-zero eigenvalues) of A can be multiplied by some non-zero real without
affecting the eigenvalue equation—The resulting new A is still a solution to Eq. (17).
Now, for any choice of A, we have

AT g0A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ1 0 . . . 0 0 0 0
0 μ2 . . . 0 0 0 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

0 0 . . . μNs 0 0 0
0 0 0 0 
 
 


0 0 0 0 
 
 


0 0 0 0 
 
 


⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(59)
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whereμi > 0, and the 
 indicates again a possibly non-zero entry. In order to properly
normalize A, we first divide its first j = 1, 2, . . . , Ns columns by

√
μ j , i.e., set

Ai j → Ai j√
μ j

(60)

for i = 1, 2, . . . , Ns + 3 and j = 1, 2, . . . , Ns. This guarantees that

AT g0A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 0 0 0
0 1 . . . 0 0 0 0
...

...
. . .

...
...

...
...

0 0 . . . 1 0 0 0
0 0 0 0 
 
 


0 0 0 0 
 
 


0 0 0 0 
 
 


⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(61)

The lower right 3 × 3 sub-block of A is then substituted by

Ai j → ϒi−Ns, j−Ns (62)

where i, j = Ns + 1, Ns + 2, Ns + 3, and the 3 × 3 matrix ϒ is determined from

ϒT g(rot)
0 ϒ =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ (63)

i.e., the j th column of ϒ is the j th eigenvector of the symmetric matrix

g(rot)
0 =

⎡
⎣ g�1�1 g�1�2 g�1�3

g�1�2 g�2�2 g�2�3

g�1�3 g�2�3 g�3�3

⎤
⎦

∣∣∣∣∣∣{{
s(e)i

}
,
{
�i |t0

}} (64)

divided by the square root of the respective eigenvalue.

B Initial conditions

Let qi (t0) and q̇i (t0) be the initial conditions at time t = t0. The constants a j , b j can
be solved from the initial conditions

qi (t0) =
(∑

r

br Air

)
+

∑
j,k

Bi jk

(∑
s

bs A js

) (∑
u

bu Aku

)
. (65)
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Multiplying with A−1
wi and summing over i gives

bw =
∑

i

A−1
wi qi (t0)−

∑
i, j,k

A−1
wi Bi jk

(∑
s

bs A js

) (∑
u

bu Aku

)
. (66)

Iterative solution gives br for all r . A similar treatment for the initial velocities reveals
that the coefficients ar can be obtained by iterative solution of

ωwaw =
∑

i

A−1
wi q̇i (t0)−

∑
i, j,k

A−1
wi Bi jk

(∑
s

ωsas A js

)(∑
u

bu Aku

)

−
∑
i, j,k

A−1
wi Bi jk

(∑
s

bs A js

)(∑
u

ωuau Aku

)
. (67)

using the known coefficients bu .

C Linear NMA

Here we shortly review the older approach to normal modes, first developed by Wilson
and co-workers [1,26] and later popularized and improved by Go et al. for large biomol-
ecules [10]. We clearly point out what are the actual approximations in that approach,
and how the omission of the rotational degrees of freedom affects the solutions of
the normal mode equations. So far, this problematics has been almost completely
neglected in the existing literature. The treatment is throughly based on Lagrangian
formulation.

C.1 Linearized shape coordinates

It is not the curvilinear shape coordinates, which were used in the classical work of
Wilson and co-workers [1], but instead their linearized counterparts. The linearized
counterpart s̄i of the curvilinear shape coordinate si is defined by [36]

�s̄i (d1,d2, . . .) =
N∑
α=1

dα · ξ (si )
α (68)

where �s̄i = s̄i − s̄(e)i = s̄i − s(e)i , and

ξ (si )
α = ∇xα si

∣∣
e (69)

is the value of the vector derivative ∇xα si evaluated at the instantaneous moving ref-
erence conformation y1 = c′

1, y2 = c′
2, . . .. It must be emphasized that although

s̄(e)i = s(e)i , in general s̄i is a different coordinate than si , and its value need not
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be equal to that of si in any other conformation besides in the reference conforma-
tion. Also, the types of motion that s̄i and si describe are generally different—For
example, a change in linearized bond-angle induces also a change in bond lengths
(this is often accounted by saying that the linearized bond-angle possesses stretching
characteristics), where as changing the corresponding curvilinear bond-angle does
not alter the lengths of the bonds spanning the angle. Also, as surprising as it is, the
explicit relations s̄i = fi (s1, s2, . . .) depend implicitly on the choice of the body-
frame {u′

1,u′
2,u′

3}—Changing the body-frame also generally changes these relations
(see Ref. [36]; Incidentally, this is also what Eckart states, although in a slightly dif-
ferent form, in the first page of his article).

C.2 Displacements

The nuclear displacement dα is related linearly (around the moving reference position
c′
α) to the changes in the linearized shape coordinates. Mathematically,

dα =
3N−6∑
i=1

ξ (α)si
�s̄i (70)

where

ξ (α)si
= ∂dα

∂si

∣∣∣∣
e

= ∂yα
∂si

∣∣∣∣
e

= ∂xα
∂si

∣∣∣∣
e

(71)

is the instantaneous reference value of the tangent vector associated with the particle
α and coordinate si at the time t [36]. Notice that the second last equality follows from
the fact that c′

α does not depend on the shape coordinates, and the last equality follows
from the fact that the center of mass X does not depend on the shape coordinates.
Notice also that the reference value of a tangent vector is not generally equal to its
initial value (this rather obvious fact is often blurred in the older presentations, which
are restricted to “infinitesimal” rotations and vibrations, and which seem to take it
granted that the molecule is initially at the undeformed state).

C.3 Hessian

In order to obtain insight to the effects of changing the body-frame, it is best to start
with thecurvilinear shape coordinates, instead of their linearized counterparts. For one
thing, any potential V is always a function of the curvilinear shape coordinates, and it
does not depend on rotational coordinates. Hence, the Hessian fi j in curvilinear shape
coordinates {si } is related by its counterpart f̄i j in linearized shape coordinates {s̄i }
by
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fi j = ∂2V

∂si∂s j

∣∣∣∣
e

=
∑

kl

(
∂2V

∂ s̄k∂ s̄l

∂ s̄k

∂si

∂ s̄l

∂s j
+ ∂V

∂ s̄k

∂2s̄k

∂si∂s j

)∣∣∣∣
e

=
∑

kl

∂2V

∂ s̄k∂ s̄l

∂ s̄k

∂si

∂ s̄l

∂s j

∣∣∣∣
e

=
∑

kl

f̄kl
∂ s̄k

∂si

∂ s̄l

∂s j
(72)

Because it is true for any choice of the body-frame that

∂ s̄i

∂s j

∣∣∣∣
e

= δi j (73)

(this is the consequence of the definition in Eq. (68), See Ref. [36], page 044319–8),
it follows that

fi j = f̄i j (74)

i.e., the Hessian in a set of curvilinear shape coordinates is identical with that in their
linearized counterparts.

C.4 Metric tensor

Because ξ (α)si
· ξ (α)s j

are constant, it also follows that the “vibrational” elements of the
covariant metric tensor,

gs̄i s̄ j =
N∑
α

mαξ
(α)
si

· ξ (α)s j
(75)

are constants, when the linearized shape coordinates are utilized. However, the Coriolis
elements

gs̄i� j =
N∑
α

mαξ
(α)
si

· ∂xα
∂� j

(76)

generally are not (they may depend on the shape coordinates {s̄1, s̄2, . . .}). As a con-
sequence, the use of Eckart axes eliminate Coriolis terms only in the reference con-
formation, and not in an arbitrary conformation.

C.5 Christoffel symbol

While the Christoffel symbols

�s̄i s̄ j s̄k =
N∑
α

mα

∂yα
∂si

∣∣∣∣
e
·
[
∂

∂ s̄ j

(
∂yα
∂sk

∣∣∣∣
e

)]
(77)
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containing only the vibrational degrees of freedom vanish identically, those

�s̄i� j s̄k =
N∑
α

mα

∂yα
∂si

∣∣∣∣
e
·
[
∂

∂� j

(
∂yα
∂sk

∣∣∣∣
e

)]
(78)

which connect two vibrational, and one rotational degrees of freedom do not neces-
sarily vanish.

C.6 Normal mode calculation

The eigenvalue problem is again that of Eq. (17). As we have seen, the Hessian is
the same as in the corresponding curvilinear case. The reference value of the metric
tensor g associated with the three orientational angles {�i } and the active linearized
shape coordinates is also the same as that in the curvilinear case. Hence, the eigen-
values (frequencies) and eigenvectors produced by the linear and curvilinear NMA
calculation are identical.

Also, as in the curvilinear case, the total momentum P is conserved, but the total
energy E and the total angular momentum L are not (now the variable Coriolis ele-
ments cause this non-constancy).

D Numerical evaluation of trajectories and displacements

In order to evaluate trajectories, we must be able to numerically evaluate the
nuclear position xα (tn) at the time t = tn . As a first step, the values of {�1 (tn) ,
�2 (tn) ,�3 (tn)} and {si (tn)} are calculated from the solution of the curvilinear NMA
calculation.

D.1 Displacements at the time t = tn , curvilinear NMA

The atomic trajectories {xα (tn)} at the time t = tn are calculated through the recursive
method previously developed in Refs. [34] (algorithm 2 in that reference). The internal
position is given by yα = xα − X. The value of the reference positions

{
c′
α (tn)

}
at

the time t = tn can be calculated using the same procedure by setting si = s(e)i and
{�1,�2,�3} = {�1 (tn) ,�2 (tn) ,�3 (tn)}, i.e.,

c′
α (tn) = yα

({
s(e)i

}
,�1 (tn) ,�2 (tn) ,�3 (tn)

)
(79)

Once the nuclear positions {yα}n and their reference positions
{
c′
α

}
n have been cal-

culated at the time t = tn , the displacements are given by

dα (tn) = yα (tn)− c′
α (tn) (80)
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D.2 Displacements at the time t = tn , linear NMA

In the linear NMA the displacements are given by Eq. (58). In order to utilize that equa-
tion, the reference value of the tangents at the time t = tn need to be evaluated. They are
obtained easily by setting si = s(e)i and {�1,�2,�3} = {�1 (tn) ,�2 (tn) ,�3 (tn)}
to Eq. (9) in Ref. [35], i.e.,

ξ (α)si
(tn) = ∂xα

∂si

({
s(e)i

}
,�1 (tn) ,�2 (tn) ,�3 (tn)

)
(81)
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