
Random Coordinate Descent with Spinor-matrices and Geometric
Filters for Efficient Loop Closure
Pieter Chys* and Pablo Chacoń*

Structural Bioinformatics Group, Biological Chemical Physics Department, Institute of Physical Chemistry Rocasolano (IQFR),
Consejo Superior de Investigaciones Cientıfícas (CSIC), Calle de Serrano 119, Madrid 28006, Spain

*S Supporting Information

ABSTRACT: Protein loop closure constitutes a critical step
in loop and protein modeling whereby geometrically feasible
loops must be found between two given anchor residues. Here,
a new analytic/iterative algorithm denoted random coordinate
descent (RCD) to perform protein loop closure is described.
The algorithm solves loop closure through minimization as in
cyclic coordinate descent but selects bonds for optimization
randomly, updates loop conformations by spinor-matrices,
performs loop closure in both chain directions, and uses a set
of geometric filters to yield efficient conformational sampling.
Geometric filters allow one to detect clashes and constrain dihedral angles on the fly. The RCD algorithm is at least comparable
to state of the art loop closure algorithms due to an excellent balance between efficiency and intrinsic sampling capability.
Furthermore, its efficiency allows one to improve conformational sampling by increasing the sampling number without much
penalty. Overall, RCD turns out to be accurate, fast, robust, and applicable over a wide range of loop lengths. Because of the
versatility of RCD, it is a solid alternative for integration with current loop modeling strategies.

1. INTRODUCTION

Loop closure is the problem of finding geometrically feasible
conformations for a short peptide segment between two fixed
amino acid residues in a protein. This problem originates in the
existence of low-resolution regions of electron density maps
constructed from crystallographic X-ray data in the neighbor-
hood of protein loops.1 Loop closure has also been investigated
to a certain extent in ring closure studies2,3 and in the robotics
field where the inverse kinematics problem is very similar.4,5

Protein loop closure is very important in loop modeling and ab
initio studies where the ultimate goal is to predict the most
energetically favorable loops given the local protein environ-
ment.6−14 Typically, based on sequence homology modeling,
regular secondary structures are assigned to an unknown
protein after which the remaining variable regions are suitable
for loop modeling.14,15 Loop closure constitutes then the first
critical step of the complete loop modeling and aims at
obtaining a conformational loop ensemble satisfying the
geometrical closure constraints.
For loop closure, a loop must connect with a suitable

backbone conformation the amino-terminal fixed residue with
the carboxy-terminal target residue (see Figure 1). The amino-
terminal and carboxy-terminal anchor residue are also simply
referred to as N- and C-anchor. In principle, the goal is to have
a perfect fit at both residue anchors or at least a very small root-
mean-square deviation (RMSD) between the loop anchors and
their target positions. The exact loop length has some relevance
in the selection of a suitable loop closure method. Loop sizes

typically range from 4 to 12 residues,15−17 but larger sizes up to
17 residues have also been examined.18

To solve the loop closure problem, different methods are
available,3,15,16,19−22 and the distinction with loop modeling
algorithms is also not sharp.11,18,23−28 Pure loop closure
methods can be classified as ab initio methods (1), homology

Received: November 7, 2012
Published: February 15, 2013

Figure 1. Loop closure: the oligopeptide must connect the amino-
terminal anchor residue (N-anchor) with the carboxy-terminal anchor
residue (C-anchor). The mobile carboxy-terminal residue (C-
terminus) must reach its target position by changing the dihedral
angles φ and ψ along the loop backbone.

Article

pubs.acs.org/JCTC

© 2013 American Chemical Society 1821 dx.doi.org/10.1021/ct300977f | J. Chem. Theory Comput. 2013, 9, 1821−1829

pubs.acs.org/JCTC

methods (2), or hybrids (3) between them. Ab initio methods
generate ensembles of loop conformations from scratch,
whereas homology methods use fragment libraries to construct
loops with suitable peptide fragments. Hybrid methodologies
intend to use the best of both worlds and are both
computation- and library-driven.22 Methodologically, loop
closure methods can also be classified in the following three
classes:22 analytical methods (1), build-up methods (2), and
iterative methods (3). Build-up methods (e.g., loop closure
routine in PLOP) construct loops residue by residue and
subsequently refine these structures. Analytical approaches
calculate exact solutions and are fast.20,29,30 The main analytical
technique is the polynomial resultant method which solves
analytically triaxial loop closure.20 Larger loops are in essence
solved by splitting the complete loop into three large fragments
and applying the triaxial loop closure procedure. Although the
polynomial resultant method by virtue of its exactness and raw
speed appears the best choice for loop closure, it lacks some of
the flexibility of the iterative methods. Iterative methods either
employ local minimization techniques with an exact molecular
geometry or use multidimensional minimization allowing
geometrical distortions. One-dimensional minimization is
used in the Cyclic Coordinate Descent method (CCD) to
superimpose mobile and target anchors by finding the optimal
dihedral angle for the current rotation bond.15,16 The CCD
method is more an analytical/iterative method than a purely
iterative or analytical method. Multidimensional minimization
is done by Lagrange multipliers in the random tweak method,3

and here all dihedrals are changed at the same time for a single
iteration. Random Tweak (RT) is classified as a purely iterative
method. Direct tweak is a further development of RT and
automatically incorporates avoidance of steric clashes in the
minimization step.21 The polynomial resultant, RT, and CCD
methods do not include clash avoidance during actual loop
closure.
Cyclic coordinate descent is in essence one of the most

simple loop closure methods with both advantages and
disadvantages as compared to other algorithms. Probably,
robustness and algorithmic flexibility are its main assets as
compared to its competitors. From the iterative methods, RT
appears to be much faster in comparative tests from ref 14. In
loop closure without clash detection the polynomial resultant
yields exact solutions and is also faster than CCD. See ref 22 for
a recent review of loop closure methods in the context of loop
simulations.
Here, a new analytical/iterative algorithm is presented to

perform more efficiently loop closure. The algorithm, denoted
random coordinate descent (shortly RCD), combines algo-
rithmic principles from CCD algorithms15−17 with distinct and
new features. Rotation bonds are chosen randomly instead of
sequentially, and a hybrid spinor-matrix approach is imple-
mented for fast conformational updating. Spinor-matrices
should in principle yield the fastest computational scheme.31,32

For the optimization protocol, a semianalytical procedure is
used and is based on theory in ref 15. A further key element is
the introduction of different types of geometrical filters with
specific code placement in the algorithm. Included geometric
filters are clash detection of the loop with the protein
surrounding (1), collision detection between the loop backbone
atoms (2), and filters constraining the dihedral angles to
Ramachandran ranges (3). Experimental and comparative tests
are made about these geometric filters in RCD, their relative
code placement, and the repercussions on sampling and time

performance for loop closure. It is shown that a versatile,
efficient, and robust algorithm is obtained which can be set up
for sampling and/or time performance.

2. METHODS
The main scheme of the RCD algorithm is shown in Figure 2.
The inputs of the algorithm are the protein coordinates and the

two anchor positions of the N- and C-terminal end residues of
the target loop. The protein coordinates are used to construct a
3D grid to screen out loops having steric clashes with the local
protein environment, whereas the anchors are used as starting
points to build an initial and open loop candidate. To obtain a
loop candidate, the corresponding internal coordinates are
generated from a peptide backbone template or are directly
taken from the native loop conformation. As explained later, the
native internal coordinates were only used for validation
purposes. Then, from these internal coordinates an initial
conformation is generated with the N-anchor in its native
position but the C-anchor being randomly out of place. With
the geometric pre-filters active, this open loop candidate has no
clashes with the local protein environment and/or conforms
the energetically favorable regions of the Ramachandran plot.
The actual loop closure procedure on the 3D grid can now start
by keeping only the N-anchor fixed and allowing the C-anchor
to freely move. In each iteration of the algorithm, a dihedral
angle is randomly selected and minimized to obtain the most
optimal rotation that reduces the RMSD between the mobile
and target C-anchor. Geometric inside filters now determine
whether the loop conforms the Ramachandran valid regions
and/or whether the internally updated loop conformation does
not clash with the protein loop surrounding. If the loop passes
these inside-filter checks, the updated loop conformation is

Figure 2. Algorithmic scheme of random coordinate descent (RCD)
for generating a single loop solution.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct300977f | J. Chem. Theory Comput. 2013, 9, 1821−18291822

accepted. If it is rejected, the old conformation is reused. In
either case, the cycle starts over again by selecting randomly a
new and different dihedral angle.
This loop closure protocol iterates until the anchor RMSD

becomes lower than a given threshold (e.g 0.25 Å as in ref 14).
If now the converged loop does not pass the post-filter checks
for intraloop backbone clashes, the algorithm basically restarts a
new initialization. This means that a new and open loop
candidate to perform loop closure is generated without
reference to the post-filter rejected loop. Similarly, if the
mobile anchor has not converged to its target position in less
than a fixed number of iterations the initialization procedure is
also triggered and executed to yield a new loop candidate. On
the contrary, if the converged loop candidate passes the post-
filter checks, it is accepted as a loop closure solution. The full
algorithm is then repeated from a new, different initial
candidate to obtain the desired number of closed loop
solutions.
In addition, the overall algorithm allows one to apply the

complete loop closure in the reverse chain direction during
which the C-anchor becomes fixed and the N-anchor mobile. In
a standard RCD run where thousands of closed loops are
generated, loop closures will be performed in a single sense but
alternating between forward or backward directions in separate
runs. The ability to close loop candidates in both senses
enhanced sampling variability. Moreover, we will see that
switching the direction whenever the current loop fails to
converge improved time performance. In this case, the most
favorable loop closure direction naturally dominates the loop
closure.
The RCD algorithm consists now of four functional units: a

scheme to select rotation bonds (1), a dihedral angle
optimization routine (2), a procedure to update loop
conformations (3), and a geometric filter part (4). The bond
selection scheme picks always randomly a bond while avoiding
the previously chosen bond. It is a simple scheme, and we will
not discuss it further. The other functional units are explained
chronologically in the next three sections (sections 2.1−2.3).
Afterward, technical details are presented (section 2.4), after
which the method validation for RCD will be highlighted
(section 2.5).
2.1. Dihedral Angle Optimization. When the random

bond selection scheme in the algorithm has picked a rotation
bond, the minimization routine must now calculate the optimal
rotation angle such that the mobile C-anchor moves as closely
as possible to the target anchor position. This is equivalent to
minimization of the root-mean-square-deviation between the
mobile and target anchor atom coordinates. We employ a
similar approach as in ref 15 but use the equation with dot
products [eq 8 in ref 15] instead of the final and analytical
equation derived there. The routine is thus a two-step scheme
which is now commented upon in detail.
In the first step, the protein loop is aligned in such a way that

the selected bond is parallel to the x axis. The unit bond vector
becomes then equal to [1 0 0]T. To that purpose, the rotation
matrix A is computed, which obeys

= A b b b[100] []T
x y z

T
(1)

with (bx,by,bz) being the normalized bond coordinates prior to
alignment. Matrix multiplication of A with both the mobile and
target anchor coordinates relative to the first atom of the
chosen bond results in the transformed coordinates ({mi} and

{ai} for i = 1, 2, 3). In the second step, the optimal angle δ is
now calculated:15

δ =
∑ ·| | ̂

∑ ·
= ⊥

=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

m a a

m a
arctan i i i i

i i i

1
3

1
3

(2)

with |ai| being the magnitude of ai and aî⊥ being the
orthonormal vectors to the planes formed by ai and [1 0 0]T.
In eq 2 only the y and z coordinates from {aî⊥} and {mi} must
be used in the numerator since the alignment of the rotation
bond makes the x components for {aî⊥} naturally zero.

2.2. Conformational Updating. Loop conformations are
updated in the loop closure routine by using spinors and
matrices, and this is done right after the minimization step. The
terminal loop segment after the chosen rotation bond is rotated
through the computed dihedral angle. Spinors are rotational
operators from geometric algebra (GA) and are isomorphic to
quaternions.33−36 First, a base spinor R is constructed:

δ δ ι= + ̂⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠R bcos

2
sin

2 (3)

with δ being the rotation angle obtained from dihedral
optimization, b ̂ being the normalized rotation axis vector
(unit bond vector), and ι being the pseudoscalar, which is an
entity in GA to manipulate expressions. The vector b̂ can
always be computed from the existing loop conformation. The
computed spinor R corresponds now to the 4-tuple (α,bx,by,bz)
and is used as input for the second step. Herein, the rotation
matrix A is computed:

α α α

α α α

α α α

=

+ − − −

+ + − −

− + + −

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

A

b b b b b b b

b b b b b b b

b b b b b b b

2

1
2

1
2

1
2

x x y z x z y

x y z y y z x

x z y y z x z

2 2

2 2

2 2

(4)

If now xi are the current coordinates of loop atom i and xe is the
coordinate of the end atom of the selected rotation bond, the
updated coordinates xi′ become

′ = − +Ax x x x()i i e e (5)

and eq 5 must be applied to all atoms located in the carboxy- or
amino-terminal direction of the chosen rotation bond. The set
of eqs 3, 4, and 5 constitutes the two-step hybrid spinor-matrix
scheme for updating coordinates. It corresponds with the
quaternion-matrix scheme but is derived in the broader
framework of geometric algebra. Results on the equivalent
quaternion-matrix scheme show it to be one of the fastest
available methods.31,32

2.3. Geometric Filters. The filter part of the algorithm
consists in fact of three different types of geometric filters. As
mentioned before, they are integrated at different places in the
algorithm: pre-, inside- and post-filter placement versus the
closure routine (see Figure 2). We now highlight them
separately.

2.3.1. Grid Clash Filter. To check for steric clashes between
the loop and its local protein surrounding, a simple three-
dimensional grid is used. Grid points are assigned 1 if they
belong spatially to the protein surrounding and 0 if space is
available to place loop atoms. This is done by constructing van
der Waals spheres at the protein atom positions. Loop atoms

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct300977f | J. Chem. Theory Comput. 2013, 9, 1821−18291823

can then be checked for steric clashes with the protein atoms by
making a boolean check at their grid positions. This filter can
be activated as pre-, inside-, or post-filter.
2.3.2. Loop Clash Filter. This filter checks for inside clashes

between all loop backbone atoms and calculates the interatomic
distances to that purpose. A cutoff factor for atomic softness
was applied and always multiplied with the sum of the two
atomic radii involved in the computation. The cutoff was set at
0.5 in agreement with ref 14, and radius values were taken from
ref 37. This geometric filter was implemented both as an inside
filter and a post-filter.
2.3.3. Adaptative Ramachandran Filter. This filter restricts

the dihedral angles φ and ψ according to valid domains of the
Ramachandran plot. One filter can function during initialization
(pre-filter) and another one works inside the loop closure
(inside filter) but before the grid clash filter is applied (see
Figure 2). We followed a very basic procedure in which the
peptide dihedral angles are restricted to simplified and
rectangular areas in the Ramachandran plot. Here, φ angles
are restricted to [−175°,−40°] and ψ angles to the range
[−60°,175°] as was defined in ref 16. The ω angles were always
kept fixed. Two exceptions are made to the application of a
Ramachandran filter. First, proline has a fixed φ, and second,
glycines retain complete dihedral freedom. The initialization
filter simply rejects or accepts a loop conformation, but the
inside filter is more subtle. If the optimal angle is out of the
correct Ramachandran range, the filter calculates the rotation
that is still possible within the valid range. The loop is
accordingly updated. However, when this angle becomes too
small (<|6 × 10−5|°), the rotation is rejected and the
Ramachandran range restriction is taken away for this dihedral
during the remainder of the current loop closure. Such a filter is
denoted here as an adaptative Ramachandran filter. We
experimented with several other Ramachandran base filters,15,17

but these did not have any effect, which is in agreement with
the observations in refs 15 and 17.
2.4. Technical Details. 2.4.1. Initialization. To randomize

the loop conformation the existing or created dihedrals are by
default cycled several times by randomly rotating the bonds. If a
pre-filter is active, it checks the conformation always right after
this step and repeats the protocol if needed. The available
degrees of freedom to attain loop closure are as follows. Each
peptide residue between the anchors can rotate both its φ and
ψ angles, but the corresponding ω angle is always kept fixed.
The ψ angle of the amino-terminal N-anchor and the φ angle of
the carboxy-terminal C-anchor are also allowed to rotate. These
degrees of freedom also apply when closing the loop in the
reverse chain direction. One exception is made to these degrees
of freedom. The proline residue gets assigned a fixed φ angle in
correspondence with its rigid nature. Overall, for an n-residue
loop, 2(n − 2) + 2 = 2n − 2 rotational degrees of freedom are
present (excluding proline deviations).
2.4.2. Grid Clash Filter. A cubic and orthogonal grid is

always constructed on the basis of the end atom positions of
the loop. The most important grid characteristic is the step size
(Å), which is the distance between two grid points along its
orthogonal axis directions. We found optimum values for the
step size around 0.20−0.25 Å. A single radius value of 3.0 Å was
used for all atom types (double of 1.5 Å). To account for
softness in clashes, a softness factor of 0.5 was used in
accordance with ref 14.
2.4.3. Implementation. For the implementation, we

programmed in C++, and computations were done in Linux

(centOS 5.5) on a 64-bit machine. An Intel Core (TM) i7 CPU
950@3.07 GHz processor with 12 GB of RAM was used. The
executables were compiled with the Intel (version 12.1)
compiler under -O3 compilation level. The RCD algorithm as
a tool for doing protein loop closure is available at http://
chaconlab.org/rcd and comes with a concise manual.

2.5. Method Validation. To validate our algorithm, we
followed the three-step procedure depicted in Figure 3. First,

open loop candidates are generated from loop benchmark sets.
Second, RCD performs loop closure as explained before.
Finally, RMSD values between the loop solutions and the
original native coordinates are calculated to evaluate the quality
of the loop closure.

2.5.1. Loop Candidate Generation. To start, native and
closed loops were extracted from known loop structures to
obtain the exact loop atom coordinates. We generate random
initial conformations by keeping the loop anchored at one
terminus and moving away the other terminus from its proper
location. The mobile terminus is moved by randomly
perturbing the closed conformation through rotation of its
dihedral angles. The resulting loop is then a loop candidate for
loop closure, meaning that the RCD algorithm must restore the
perturbed and mobile terminus to its original position. This is
the basic scheme, but we employ two variants depending on the
internal coordinate sets used. In the most simple case that we
call the native protocol, bond length and valence angle values
are kept from the native conformation, and only dihedrals are
allowed to vary. This is the standard perturbation protocol used
to generate validation tests in line with previous loop closure
algorithms (see for instance refs 14 and 15). Thus, the native
protocol is used for comparative purposes.
To validate the RCD algorithm in the algorithmic tests which

we present later, we were more stringent and varied as well
bond lengths and valence angles. This second protocol,
denoted randomized, corresponds to the real loop closure
case in which only the terminal anchors are given as part of the
problem statement. In that case, the internal coordinates are of
course introduced by a set of default values. More exactly for
the randomized protocol, bond lengths and valence angles for
the backbone geometry were taken from ref 38 and small
random deviations added by using ranges of refs 38 and 39.

Figure 3. Scheme illustrating the method validation used for testing
the RCD algorithm.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct300977f | J. Chem. Theory Comput. 2013, 9, 1821−18291824

http://chaconlab.org/rcd
http://chaconlab.org/rcd

Moreover, to improve the conformational screening for ideal
loops, the random deviations on internal coordinates are
performed each time a new closure is started. Thus, each loop
candidate has a completely distinct set of internal coordinates.
Finally, whether using the native or randomized protocol, the
terminal anchors always retained their native or given internal
coordinates in all validation tests to allow in principle for a
perfect fit upon anchor convergence.
2.5.2. Benchmark Sets. Two standard benchmark sets were

used. The first benchmark set is a classical set of protein loops
investigated in refs 15−17 and consists of 10 loops for three
peptide sizes: tetra-, octa-, and dodecapeptides. We added 10
loops of 15-peptides from ref 5 to have representatives for the
class of long loops. We refer later to this set as benchmark set 1.
The second benchmark set consists of 51 octapeptides, 17
undecapeptides, and 10 dodecapeptides and stems from ref 14.
We needed to remove three octapeptides from the original 54
octapeptides since we found that they were in fact non-
apeptides [1awd.pdb (55−63), 1byb.pdb (246−254), and
1ptf.pdb (10−18)]. This is expected to have negligible
influence on the obtained results since the octapeptide group
is large (n ≃ 50). This resulting set of protein loops is later
referred to as benchmark set 2. All PDB files were retrieved
from the PDB database, individually checked and prepared for
subsequent use. More details about the benchmark sets can be
found in the Supporting Information. In the tests, 5000 loop
solutions were always generated per PDB entry from these
benchmark sets with a RMSD anchor threshold of 0.25 Å. This
anchor threshold applies to the two-atom approach as used in
ref 14, and it is the two last atoms of the terminal anchor
residue which are always used.
2.5.3. RMSD Validation. After actual loop closure, our

validation protocol consisted of measuring the RMSD distance
between the backbone atoms (including oxygen atoms) of each
native loop and the obtained loop solutions. In such a manner,
one can have an estimation of the sampling power of the
method. We employed two statistical parameters. Parameter
⟨RMSD⟩min or RMSD min is the average RMSD value for the
loop solutions closest to each native loop over a benchmark set.
Analoguously, ⟨RMSD⟩avg or RMSD avg refers to the average
value of the RMSD averages per loop entry. Stated differently,
each PDB loop is characterized by a RMSD value for its
solution ensemble, and averaging this value over the benchmark
yields ⟨RMSD⟩avg . We naturally assume that ⟨RMSD⟩min values
indicate the potential for absolute conformational sampling,
that is, to get close to the native loop. On the other hand,

⟨RMSD⟩avg likely indicates how well the whole loop ensemble
lies around the native loop conformation. In general,
⟨RMSD⟩min and RMSD avg correlate well and positively in
the test results. We observed as well that the standard
deviations for these sampling indicators are large. However,
this appears to stem from the fact that individual loops with
given length show large variation in both RMSD minima and
averages. For a benchmark set there can thus be quite some
heterogeneity in terms of sampling statistics. Nevertheless,
repeating an experiment several times (see Results, section 3.2)
showed that the spread between separate runs over the same
benchmark was much lower and that ⟨RMSD⟩min and
⟨RMSD⟩avg are therefore accurate values for the sampling
characteristics in our experiments.

3. RESULTS

3.1. Algorithm Tests. To detect an optimal setup for RCD,
we examine how geometrical filters affect the sampling and time
performance. Both type and placement of geometrical filters in
the RCD algorithm are considered in two computational tests.
Table 1 shows experimental results of a first test with RCD

algorithms having different clash filter combinations. Using the
randomized protocol, 5000 loop solutions were generated for
benchmark set 1 (see section 2.5.2). These are also the test
conditions for the second test presented later. The RCD Inside
and RCD Post versions have the grid clash filter coded
respectively inside and after the loop closure routine. RCD
Inside + Loop includes the intraloop clash filter located inside
and at the end of the loop closure routine. The results obtained
with the smallest loops were very similar in all cases. However,
for medium and long loops, all versions with grid clash filter
active (Inside, Post, and Inside + Loop) have lower RMSD
values than the RCD version without the grid filter (No). The
RMSD averages illustrate the improved conformational
sampling best. The timings for the post-filter version increase
significantly versus the inside-filter implementation, and the
latter approach is thus advantageous for time performance.
Remark that the post-filter layout corresponds to what most
closure methods use as clash detection protocol in the study.14

It also appears from Table 1 that post-filter placement might
offer some benefit in terms of conformational sampling for big
loops. When the loop clash filter is placed inside the loop
closure routine of the RCD Inside variant (Inside + Loop),
time performance decreases without any benefit in terms of
sampling performance. For absolute time performance, the
inside-filter setup does perform well with respect to the No grid

Table 1. Comparison of RMSD Measures and Timings for Test Runs with Different Grid Clash Filter Combinations Set up in
the RCD Algorithma

loop size

4 8 12 15

RMSD (Å) RMSD (Å) RMSD (Å) RMSD (Å)

clash filter avg min t(min) avg min t(min) avg min t(min) avg min t(min)

No 1.30 0.34 0.17 3.82 1.14 0.15 6.38 2.10 0.20 8.86 2.76 0.54
Inside 1.29 0.33 0.21 3.46 1.07 0.42 5.42 1.92 1.67 7.12 2.53 2.85
Post 1.29 0.33 0.23 3.46 1.20 0.36 5.04 1.85 9.37 6.88 2.42 6.40
Inside + Loop 1.29 0.33 0.31 3.45 1.14 0.84 5.41 1.92 2.82 7.21 2.47 6.02

aValues apply to 5000 randomized loop closure solutions (RMSD anchor threshold 0.25 Å) with benchmark sets from refs 5 and 15. The grid clash
filter designations are as follows. No refers to the algorithm without a filter active. Inside corresponds to the inside-filter version and post to post-
filter placement. The Inside + Loop case includes both the grid and loop clash filters as inside filters. Abbreviations: avg = average RMSD over all
loop solutions, min = average over the lowest obtained RMSD values taken from each loop in the benchmark, t = time.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct300977f | J. Chem. Theory Comput. 2013, 9, 1821−18291825

setup despite the observed time deficit. Only for 12 peptides for
instance do the computations slow down roughly by a factor
10. This time performance is all the better if one considers that
the timings are better than the fastest reported method in ref
14, RT. For tetrapeptides, the results differ from above, and
here sampling is nearly equal for all versions as shown by the
⟨RMSD⟩min and ⟨RMSD⟩avg values. The time performance of
post- and inside-filter setup here is comparable, and both other
RCD versions do not show very different timings. Overall,
Table 1 indicates that the Inside variant has the best sampling
and time characteristics.
Table 2 shows results of a second test with Ramachandran

filters and the bidirectional loop closure protocol added on top
of the optimal RCD variant from Table 1. The reference in
Table 2 (No) therefore corresponds to the best RCD layout
from Table 1 (Inside). Here, the Ramachandran pre-filter
approach (Pre) appears to speed up the loop closure in longer
loops and samples at least equally well as the reference. RCD
with both the pre- and inside Ramachandran filters active (Pre
+ Inside) samples however significantly better than the
reference, as is indicated by the lower ⟨RMSD⟩min and
⟨RMSD⟩avg values. This version has also better RMSD values
than the pure pre-filter layout, suggesting that the double filter
combination screens intrinsically better. Concurrently, it is also
evident in Table 2 that the improved conformational sampling
comes at the expense of time performance. Finally, the
application of both Ramachandran pre- and inside filters
together with the bidirectional protocol (Switching) seems to
yield the best overall performance but is closely matched with
only applying RCD in the forward chain direction (Pre +
Inside).
The overall results of the two tests with RCD are nicely

summarized and illustrated in Figure 4. Herein, RMSD
distributions of the loop solution ensemble for protein loop
1i0h.pdb (residues 145−152) are shown for three variants of
RCD. The green RMSD distribution corresponds to a loop
solution ensemble of RCD without a grid clash filter. It is now
observed that adding a grid clash inside filter (blue) shifts the
distribution without a grid clash filter (green) to the left and
toward lower RMSD values. Adding as well Ramachandran
filters (red) shifts the blue RMSD distribution further to the
left. The observed shifts are valid over the full RMSD range,
indicating a shift of the loop solution ensembles themselves,
and this observation correlates well with the experimental
changes in ⟨RMSD⟩avg and ⟨RMSD⟩min values. As such, it is
seen how successive inclusion of geometric and Ramachandran
filters on top of a core RCD algorithm without filters results in

improved sampling characteristics. Figure 5 shows in
conjunction how the red and green sampling distributions
from Figure 4 translate to actual loop solutions in the local
protein environment.
The previous test results with randomized internal

coordinates mimic the more realistic loop closure case in
which one has no prior knowledge about the ideal loop
solution. However, for comparative reasons, the same
experimental runs can be done using the native protocol.
These tests yield results in agreement with those obtained from
the randomized protocol (see the Supporting Information).
Timings are in general slightly faster, and conformational
sampling is nearly identical for octa-, dodeca-, and pentadeca-
peptide loops. Only tetrapeptide loops show some deviations.
Corresponding ⟨RMSD⟩min values to those in Tables 1 and 2
for tetrapeptides are around 0.15 Å, which is approximately half
of the values seen with randomized coordinates. For the
remainder, the results with 4-peptides agree with the
observations in larger loops, and here a more systematic
trend in the timings can be observed.

3.2. Comparative Tests. This section compares the RCD
algorithm with other loop closure algorithms and is split up in
two parts. First, a concise comparison is made with cyclic
coordinate descent (CCD) algorithms which do not take into
account clashes with the local protein surrounding. Second, a
comparison is made with other loop closure methods which
effectively yield clash free loop solutions. Experimental runs

Table 2. Comparison of Test Runs of the RCD Algorithm with Different Ramachandran Filter Schemesa

loop size

4 8 12 15

RMSD (Å) RMSD (Å) RMSD (Å) RMSD (Å)

Ramach. filter avg min t(min) avg min t(min) avg min t(min) avg min t(min)

No 1.29 0.33 0.21 3.46 1.07 0.42 5.42 1.92 1.67 7.12 2.53 2.85
Pre 1.08 0.31 0.16 3.39 0.95 0.34 5.23 1.68 0.91 7.23 2.52 1.84
Pre + Inside 0.87 0.33 0.49 3.17 0.89 0.87 4.87 1.58 3.12 7.02 2.46 4.88
Swithcing 0.97 0.28 0.49 3.04 0.81 0.77 4.93 1.59 3.04 6.80 2.36 2.06

aFilter designations are as follows. The No case uses no Ramachandran filter but has the grid clash inside filter active. The Pre form adds the
Ramachandran filter as a pre-filter. The Pre + Inside setup uses both the Ramachandran pre- and inside filter while retaining the grid clash filter.
Switching refers to the pre + inside mode applied in the forward and backward protein directions and changing direction upon convergence failure in
one direction. See for more details Table 1.

Figure 4. Illustrative RMSD distributions with respect to the native
loop for the eight-peptide loop solution ensemble of 1i0h (residues
145−152). Green is RCD without a grid clash filter, blue is RCD with
grid clash filter, and red is RCD with grid clash and Ramachandran
inside filter.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct300977f | J. Chem. Theory Comput. 2013, 9, 1821−18291826

with RCD were always performed under identical conditions of
the relevant loop closure studies from which the experimental
data were taken.14,15

Cyclic coordinate descent algorithms were taken as a basis to
develop the RCD algorithm, and especially the original CCD
algorithm15 must be mentioned in this regard. The other
algorithms16,17 take on new development lines and are in
essence already successors intending to supersede the original
CCD algorithm. In fact, a critical statement made in ref 15
suggested including clash filters inside a CCD-derived
algorithm and evaluating the possible performance effects.
This development line was partially followed here. Never-
theless, RCD can also be compared with CCD when all the
geometric filters are switched off since in the original CCD no
clash filters are present. Such a test allows assessment of the
pure random coordinate descent principle versus the cyclic
coordinate descent principle. Here, RCD runs done under
identical conditions without geometrical filters for 4-, 8-, and
12-peptides15 yield ⟨RMSD⟩min = 0.28, 1.16, and 2.10 Å,
whereas the original CCD paper15 reports 0.56, 1.59, and 3.04
Å, respectively. These results were produced with randomized
internal coordinates. The relevant benchmark set is actually
benchmark set 1 but without the 15-peptides we introduced for
the algorithm tests. We find thus that even without geometric
filters active, a random coordinate descent algorithm improves
upon a basic CCD algorithm. Timings (3.9−7.1 ms/closure)
indicate excellent relative performance (23−37 ms/closure15)
but probably also result from improvements in processor
technology. Remarkably, time performance corresponds well
with the optimum performance observed in the successor Full
Cyclic Coordinate Descent (FCCD)17 (4.5−7.1 ms/closure),
which, although not completely comparable with RCD in terms
of geometry due to its simplified Cα model, does use also two
degrees of freedom per loop unit (Cα atom for FCCD). Thus,
the RCD algorithm improves significantly upon the original
CCD when no geometric filters are used. It likely indicates that

a random coordinate descent algorithm screens better loop
solutions than a cyclic coordinate descent algorithm even if the
local protein surrounding is not considered.
Second, we compare RCD with other loop closure methods

that yield clash free loop solutions. To that purpose, relevant
data from ref 14 are compiled in Table 3 together with

experimental results here. Native internal coordinates were
used in agreement with ref 14 and run with the best RCD
algorithm from Table 2 (Switching). This optimal RCD
algorithm includes Ramachandran pre- and inside filters, an
inside grid clash filter, intraloop clash post-filter, and a
switching direction mechanism upon failure. For this
comparison, benchmark set 2 is used. This RCD algorithm at
an identical sampling number yields averaged RMSD minima of
0.78, 1.38, and 1.60 Å for 8-, 11-, and 12-peptides which are
only second to that of the best method (direct tweak). Remark
that direct tweak is the only method that also uses clash
detection inside its loop closure routine from all reported
methods in ref 14. RCD outperforms the examined CCD
implementation from ref 14, and this is a CCD version that has
a post-filter implemented to eliminate steric clashes with the
protein surrounding. Overall, the RCD algorithm samples loop
solutions extremely well based on Table 3, and the time
performance is also outstanding. The speed-up compared to
reported direct tweak values ranges from 6- to 17-fold.
Furthermore, we found that when using RCD without
Ramachandran inside filters (denoted RCD Pre), RMSD values
were still only second to those of direct tweak but with the
advantage of larger speed-ups (25−60-fold). It is unlikely that
these speed-up differences only result from advances in
processor technology. In that case, RCD outperforms the
other methods, and only direct tweak is a match due to its
better intrinsic sampling capability at a given sampling number
(number of closures/loop).
Observe now that in the comparison of Table 3 we strictly

followed the test conditions of ref 14. But, since the RCD
algorithm is fast, we considered it useful to test the effect of
increasing the sampling number n up to a value 20 times more.

Figure 5. Conformational backbone sampling with (red) and without
(green) geometric filters. Protein loop 1i0h.pdb (8-peptide, 145−152)
is closed 1000 times with RMSD threshold 0.25 Å.

Table 3. Comparison of RMSD Minima from RCD Runs
with Literature Results14a

loop size

8 11 12

algorithm RMSD (Å) RMSD (Å) RMSD (Å)

random tweak 1.22 2.22 2.64
CCD 1.20 2.11 2.57
wriggling 1.43 2.24 2.68
PLOP-build 0.99 2.18 2.69
direct tweak 0.69 1.20 1.48
LOOPYbb 0.89 1.51 1.80
RCD 0.78 1.38 1.60
RCD 20× 0.60 1.09 1.31
RCD Random 0.86 1.44 1.70

aRMSD minima are averages over 5000 generated loops with RMSD
anchor threshold 0.25 Å and benchmark set from ref 14. All RMSD
values for the different and listed methods except RCD are taken from
Table 2 of ref 14. Abbreviations: RCD = RCD with grid clash filter,
Ramachandran pre- and inside filters, bidirectional scheme, and using
the native loop, RCD 20× = RCD but sampling 20 times more
(sampling number n = 100 000), RCD Random = RCD but using
randomized internal coordinates instead of native ones.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct300977f | J. Chem. Theory Comput. 2013, 9, 1821−18291827

Figure 6 shows the results of such a test using both RCD
(squares, full lines) and RCD Pre (circles, dashed lines).

Increasing sampling numbers for the undecapeptide test set
were used, and similar tests were also done with octapeptides
and dodecapeptides. The observations are similar for 8- and 12-
peptides. The shown ⟨RMSD⟩min values are averages (N = 5),
and the spread on these values was low even for small N
(standard deviation σ ≃ 0.04 Å). After 18 min for the RCD Pre
variant, the ⟨RMSD⟩min value (1.19 Å) is at the level of the
observed direct tweak value (1.20 Å), which takes approx-
imately double the time of that (≃ 36 min) in ref 14. For RCD
itself with all filters active, more time is needed (≃ 67 min), but
sampling is better and ⟨RMSD⟩min values are improved upon by
approximately 0.1 Å. Both set-ups clearly show the same trend
(see Figure 6) and point out that more sampling leads to
conformations closer to the native loop being found. In ref 14,
it was discussed that increasing the sampling number for the
fastest loop closure methods does not lead to improvements in
⟨RMSD⟩min values unless an exceptionally high number of
samplings is done (order of 1 million loop closures). For RCD,
this does not appear to be the case for ⟨RMSD⟩min values, but
we did observe that ⟨RMSD⟩avg values remained the same.
Thus, conformational space is more screened, resulting in lower
⟨RMSD⟩min values, whereas the ensemble might retain its
spatial characteristics. One possible explanation for the
discrepancy with ref 14 might be that the discussed methods
used post-filters whereas RCD uses an inside grid-clash filter.
Table 3 also gives ⟨RMSD⟩min values for RCD using

randomized internal coordinates (RCD Random) instead of
using native ones (RCD). Some evidence is present that using
more realistic conditions yields somewhat higher ⟨RMSD⟩min
values. This is certainly a relevant issue to consider when
making comparisons between tests and methods in future
studies.

4. CONCLUSIONS
Here, a new analytic/iterative algorithm for protein loop
closure was introduced which originates in the cyclic coordinate
descent approach but is distinct through new features. First, the
bond selection is random, and the RMSD minimization is
slightly different from previous ones. Second, conformational
updating of loops is done by a hybrid spinor-matrix method,

which yields a fast protocol. Third, geometric filters are
integrated in the complete closure algorithm to detect clashes
and steer the loop closure. Three types of geometric filters are
active. A grid clash filter detects clashes with the protein
environment, an interatomic distance filter eliminates loop
backbone clashes, and a soft Ramachandran filter constrains the
dihedral angles. Last, RCD can do loop closure in both chain
directions and is steered by the convergence rates in both
directions to that purpose.
Experimental results show how the different geometric filter

combinations and their code placement affect sampling and
time performance. Placing the grid clash and Ramachandran
filters inside the loop closure routine turn out to be key points.
The algorithm is accurate, fast, robust, and flexible. It
outperforms CCD and other loop closure algorithms, which
apply steric clash filters as post-filters. Furthermore, it is
competitive with the state of the art methods in loop closure
sampling. Upon increasing the sampling number, sampling
performance can be further improved in RCD. As well, due to
its algorithmic flexibility, it is possible to trade off sampling for
time performance while retaining good overall performance.
The results with RCD implicitly point out that integrating clash
filters inside the loop closure routine is the way to go at present.
Both the algorithms with such approach, RCD here and direct
tweak as reported in ref 14, yield the best conformational loop
sampling. Furthermore, RCD as a natural successor to CCD
illustrates that analytic/iterative algorithms are good alter-
natives for protein loop closure and are competitive with the
tweak algorithms.
Finally, the RCD method is very modular, so that in future

work it could be integrated easily in any existing loop modeling
approach. It would thus be interesting to examine the
integration of RCD with knowledge-based,12,40,41 physics-
based,10,42−45 or multiscoring strategies.46

■ ASSOCIATED CONTENT
*S Supporting Information
More detailed information about the protein loop benchmark
sets used in this study. The PDF file also includes the results of
the algorithm tests with RCD using the native loop protocol.
This material is available free of charge via the Internet at
http://pubs.acs.org/.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: denpieterch@hotmail.com (Chys), pablo@chaconlab.
org (Chacoń).
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This study was supported by Spanish grants CAM-S2010/
BMD-2359 and BFU2009-09552 and the Human Frontier
Science ProgramRGP0039/2008. We thank Jose ́ Ramoń
Loṕez Blanco for the valuable discussions.

■ REFERENCES
(1) van den Bedem, H.; Lotan, I.; Latombe, J.; Deacon, A. Acta
Crystallogr., Sect. D 2005, 61, 2−13.
(2) Go, N.; Scheraga, H. Macromolecules 1970, 3, 178−187.
(3) Shenkin, P.; Yarmush, D.; Fine, R.; Wang, H.; Levinthal, C.
Biopolymers 1987, 26, 2053−2085.

Figure 6. Evolution of averaged ⟨RMSD⟩min values (black) and
timings (red) for undecapeptide loop cases14 with increasing sampling
number n. Circles and dashed lines depict RCD with only the
Ramachandran pre-filter active (RCD Pre), whereas squares and full
lines depict RCD with both the Ramachandran pre- and inside filters
functioning (RCD).

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct300977f | J. Chem. Theory Comput. 2013, 9, 1821−18291828

http://pubs.acs.org
mailto:denpieterch@hotmail.com
mailto:pablo@chaconlab.org
mailto:pablo@chaconlab.org

(4) Chiacchio, P.; Chiaverini, S.; Sciavicco, L.; Siciliano, B. Int. J.
Robot. Res. 1991, 10, 410−425.
(5) Zhao, J.; Badler, N. ACM Trans. Graph. 1994, 13, 313−336.
(6) Jamroz, M.; Kolinski, A. BMC Struct. Biol. 2010, 10.
(7) Fiser, A.; Kinh Gian Do, R.; Šali, A. Protein Sci. 2000, 9, 1753−
1773.
(8) Lee, J.; Lee, D.; Park, H.; Coutsias, E.; Seok, C. Proteins 2010, 78,
3428−3436.
(9) Liang, S.; Zhang, C.; Sarmiento, J.; Standley, D. J. Chem. Theory
Comput. 2012, 8, 1820−1827.
(10) Lin, M.; Head-Gordon, T. J. Chem. Theory Comput. 2008, 4,
515−521.
(11) Liu, P.; Rassokhin, D.; Agrafiotis, D. J. Comput. Chem. 2009, 5,
e1000478.
(12) Rata, I.; Li, Y.; Jakobsson, E. J. Phys. Chem. B 2010, 114, 1859−
1869.
(13) Rossi, K.; Weigelt, C.; Nayeem, A.; Krystek, J. S. Protein Sci.
2007, 16, 1999−2012.
(14) Soto, C.; Fasnacht, M.; Zhu, J.; Forrest, L.; Honig, B. Proteins
2009, 70, 834−843.
(15) Canutesco, A. A.; Dunback, J. R. Protein Sci. 2003, 12, 963−972.
(16) Al-Nasr, K.; He, J. Int. J. Data Mining Bioinf. 2009, 3, 346−361.
(17) Boomsma, W.; Hamelryck, T. BMC Bioinf. 2005, 6, 159(11−
10).
(18) Zhao, S.; Zhu, K.; Li, J.; Friesner, R. Proteins 2011, 79, 2920−
2935.
(19) Corteś, J.; Simeón, T.; Remaud-Simeón, M.; Tran, V. J. Comput.
Chem. 2004, 25, 956−967.
(20) Mandell, D.; Coutsias, E.; Kortemme, T. Nat. Methods 2009, 6,
552−553.
(21) Hurst, T. J. Chem. Inf. Comput. Sci. 1994, 34, 190−196.
(22) Totrov, M. In Homology Modeling: Methods and Protocols; Orry,
A., Abagyan, R., Eds.; Methods in Molecular Biology; Springer
Science: New York, 2012; Vol. 857; Chapter Loop Simulations, pp
207−229.
(23) Jacobson, M.; Pincus, D.; Chayon, S.; Day, T.; Honig, B.; Shaw,
D.; Friesner, R. Proteins: Struct., Funct., Bioinf. 2004, 55, 351−367.
(24) Ko, J.; Lee, D.; Park, H.; Coutsias, A.; Lee, J.; Seok, C. Nucleic
Acids Res. 2011, 39, w210−w214.
(25) Lee, G.; Shin, W.; Park, H.; Shin, S.; Seok, C. Bull. Korean Chem.
Soc. 2012, 33, 770−774.
(26) Nilmeier, J.; Hua, L.; Coutsias, E.; Jacobson, P. J. Chem. Theory
Comput. 2010, 1564−1574.
(27) Minary, P.; Levitt, M. J. Comput. Biol. 2010, 17, 993−1010.
(28) Xiang, Z.; Soto, C.; Honig, B. Proc. Natl. Acad. Sci. U. S. A. 2002,
99, 7432−7437.
(29) Coutsias, E.; Seok, C.; Jacobson, M.; Dill, K. J. Comput. Chem.
2004, 25, 510−528.
(30) Coutsias, E.; Seok, C.; Wester, M.; Dill, K. Int. J. Quantum Chem.
2006, 106, 176−189.
(31) Choi, V. J. Chem. Inf. Model. 2005, 46, 438−444.
(32) Chys, P.; Chacon, P. J. Comput. Chem. 2012, 33, 1717−1729.
(33) Dorst, L.; Fontijne, D.; Mann, S. Geometric Algebra for Computer
Science: An Object-oriented Approach to Geometry; Morgan Kaufmann:
San Francisco, 2007.
(34) Hestenes, D. New Foundations for Classical Mechanics; Reidel:
Dordrecht, The Netherlands, 1986.
(35) Doran, C.; Lasenby, A. Geometric Algebra for Physicists;
Cambridge University Press: Cambridge, U. K., 2007.
(36) Horn, B. J. Opt. Soc. Am. 1987, 4, 629−642.
(37) Fersht, A. Enzyme Structure and Mechanism; W.H. Freeman and
Company: New York, 1985.
(38) Engh, R.; Huber, R. Acta Crystallogr. 1991, A47, 392−400.
(39) Berkholz, D.; Shapovalov, M.; Dunbrack, R.; Karplus, P.
Structure 2009, 17, 1316−1325.
(40) Rohl, R.; Strauss, C.; Chivian, D.; Baker, D. Proteins 2004, 55,
656−677.
(41) Zhang, C.; Liu, S.; Zhou, Y. Protein Sci. 2004, 13, 391−399.

(42) Felts, A.; Gallicchio, E.; Chekmarev, D.; Paris, K.; Friesner, R.;
Levy, R. J. Chem. Theory Comput. 2008, 4, 855−868.
(43) de Bakker, P.; DePristo, M.; Burke, D.; Blundell, T. Proteins:
Struct., Funct., Genet. 2002, 51, 21−40.
(44) Sellers, B.; Zhu, K.; Zhao, S.; Friesner, R.; Jacobson, M. Proteins:
Struct., Funct., Bioinf. 2008, 72, 959−971.
(45) Arnautova, Y.; Abagyan, R.; Totrov, M. Proteins 2011, 79, 477−
498.
(46) Li, Y.; Rata, I.; Jakobsson, E. BMC Struct. Biol. 2010, 10, 1−14.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct300977f | J. Chem. Theory Comput. 2013, 9, 1821−18291829

