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applied to large-sized macromolecules. In this paper, we significantly extend the applicabil-
ity of this approach towards much larger systems by effectively solving the computational
bottleneck of these methods, the diagonalization step and associated large-scale eigenprob-
lem, on a small cluster of nodes equipped with multicore technology. Our experiments show
the superior performance of iterative Krylov-subspace methods for the solution of the dense
generalized eigenproblems arising in these biological applications over more traditional
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Eigenvalue problems expedites the study of the collective conformational changes of large macromolecules open-
Krylov-subspace method ing a new window for exploring the functional motions of such relevant systems.

Clusters of multicore processors © 2013 Elsevier Inc. All rights reserved.

1. Introduction

The most important components of living cells are proteins and nucleic acids which are formed by long unbranched
chains of aminoacids and nucleotides, respectively. They usually assemble together into large macromolecular machines
to support the main biological functions. For example, the ribosomal machinery produces new proteins according to the ge-
netic code; the chaperonin proteins assist the folding process of these new-formed proteins; and tubulin and actin filaments
support the cellular shape. At the molecular level, the biological activity of these components is frequently tackled by ana-
lyzing their dynamics and interactions. However, the direct experimental observation of the functional motions is quite com-
plex and computational studies are often the only way to predict conformational changes. Molecular Dynamics (MD)
simulations provide detailed information on the fluctuations and conformational changes of proteins and nucleic acids using
available 3D atomic structures. Unfortunately, the large size of the macromolecules and the long time scale of their motion
render MD simulations too costly or even prohibitive.

In recent years, the use of coarse-grained models (CG), i.e. reduced representations of biopolymer structures obtained by
grouping atoms into simplified entities or pseudo-atoms, has naturally provided significant computational savings by reduc-
ing the number of system variables [32]. In this context, CG merged with normal mode analysis (NMA) has arisen as a pow-
erful and popular approach to simulate collective motions of macromolecular complexes at extended time scales [6]. In

* Corresponding author. Tel.: +34 964728297.
E-mail addresses: jrlopez@iqfr.csic.es (J.R. Lopez-Blanco), rreyes@uji.es (R. Reyes), aliaga@uji.es (J.I. Aliaga), rosa.m.badia@bsc.es (R.M. Badia),
pablo@chaconlab.org (P. Chacén), quintana@uji.es (E.S. Quintana-Orti).

0021-9991/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcp.2013.03.032


http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jcp.2013.03.032&domain=pdf
http://dx.doi.org/10.1016/j.jcp.2013.03.032
mailto:jrlopez@iqfr.csic.es
mailto:rreyes@uji.es
mailto:aliaga@uji.es
mailto:rosa.m.badia@bsc.es
mailto:pablo@chaconlab.org
mailto:quintana@uji.es
http://dx.doi.org/10.1016/j.jcp.2013.03.032
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

276 J.R. Lépez-Blanco et al./Journal of Computational Physics 246 (2013) 275-288

biomolecular simulations, NMA plays an important role to analyze structural fluctuations around a well-defined conforma-
tion. In particular, CG-NMA has been successfully applied to calculate biologically relevant motions of proteins and nucleic
acids [19] even at very low resolutions [11], X-ray refinements [12], flexible fitting of atomic structures into electron micros-
copy density maps [18], efficient generation of conformational pathways [15], and ligand docking [10,22]. These results and
many others validate the use of CG-NMA modeling in describing molecular flexibility and demonstrate how this approach
has become, in practice, a powerful alternative to costly atomistic simulations.

We recently extended the applicability of such approaches to larger molecules by formulating the NMA in internal coor-
dinates (ICs), i.e. using the dihedral angles of the macromolecular chain instead of the Cartesian coordinates (CCs) of the
atoms [21]. Although ICs reduce the number of degrees of freedom (DOF) in comparison to CCs, the diagonalization step
within this procedure remains a major computational bottleneck for large molecules, even when using CG-reduced approx-
imations. Biologically relevant molecular machines such as ribosome complexes, actin filaments, microtubules, viral capsids
and many others either are beyond the applicability range or can only be addressed by very aggressive CG approximations
(e.g. a single pseudo-atom per molecule). Thus, additional methodological work must be performed to extend the applica-
bility to both larger macromolecular systems and more detailed representations.

In this paper we address the parallel simulation of the motions of large macromolecular complexes via [C-NMA, leverag-
ing clusters of computers equipped with multicore processors to tackle the diagonalization bottleneck. Specifically, we make
the following contributions:

e For this biological relevant application, we illustrate the advantages of the Krylov subspace method for the solution of
dense generalized eigenproblems over more conventional “direct” solvers based on LAPACK. While the superior perfor-
mance of Krylov subspace methods was hinted in [2] for general problems of moderate size on multicore processors
and hardware accelerators, here we extend the analysis to the large-scale eigenproblems arising in biomolecular simu-
lation using clusters of multicore processors.

e We improve the performance of all the message-passing eigensolvers by combining MPI with the SMPSs [29] runtime to
obtain an enhanced version of the Cholesky factorization, a crucial and highly parallel operation for all eigensolvers con-
sidered in this work (including the direct solver).

e The drastic reduction of computing time obtained with the proposed parallel diagonalization scheme is demonstrated by
simulating the collective motions of a representative set of large macromolecular machines. In particular, our experimen-
tal study includes a detailed performance evaluation as well as a survey of the essential functional motions of some key
biological systems extracted with IC-NMA.

The rest of the paper is structured as follows. In Section 2 we briefly review the IC-NMA method for the simulation of mac-
romolecules, exposing the underlying eigenvalue problem that currently conforms the major computational bottleneck of
this approach. In Section 3 we introduce the Krylov-subspace iterative method for the solution of generalized symmetric def-
inite eigenproblems, together with its explicit and implicit variants, and discuss their arithmetic cost and memory require-
ments. Next, in Section 4, we describe the implementation of these two variants using existing message-passing linear
algebra libraries for clusters of computers, as well as an alternative parallelization of the Cholesky factorization that lever-
ages intranode concurrency using the SMPSs runtime. In Section 5 we evaluate the performance of the different methods,
including a conventional “direct” solver from LAPACK, which can be considered as the state-of-the-art for the solution of this
type of problems. In that section we also include several 3D animations showing selected motions of large macromolecular
machines that were obtained using IC-NMA and the fast parallel methods presented here. Finally, we close the paper offering
some concluding remarks and a discussion of future work in Section 6.

2. Simulation of macromolecules via IC-NMA

In NMA the relevant collective motions are described by approximating both potential and kinetic energies as quadratic
functions of the atomic positions and velocities, respectively. This simplification allows the decomposition of the motion into
a series of deformation vectors which encode the potential displacement directions. Such vectors, or modes, are obtained by
diagonalizing the second derivative matrices of both potential (Hessian) and kinetic energies. Every mode exhibits a char-
acteristic frequency that is inversely proportional to the deformation energy cost. High frequency modes represent stiff local-
ized displacements, whereas low frequency modes correspond to soft collective conformational changes. The latter
deformations have been closely related to functional motions [19,36], and it is also well-known that there is a good corre-
spondence with the essential motions extracted from atomistic MD [24,27,1].

Following the seminal works of Go and others [16,20], we have implemented a complete mathematical NMA framework
using dihedral angles as variables. This new multipurpose tool chest, named imop [21], exploits the benefits of classical NMA
formulations in internal coordinates (ICs) while extending them to cover multiscale modeling, even for huge macromolec-
ular structures. imobp has two major advantages over current Cartesian approaches: it implicitly preserves model geometry to
minimize potential distortions and substantially reduces the number of DOFs to improve efficiency. The software also in-
cludes several atomic CG representations but the ICs are always defined by both the canonical backbone dihedral angles,
i.e. ¢ and y in proteins (see Fig. 1 for details), and the 6 rotational/translational DOFs between chains.
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In the rest of this section, we summarize the methodological aspects of the IC-NMA implemented in imop. The molecular
system is modelled as a set of atoms connected by harmonic springs. The potential energy of the system is given by:

V=3 Fy(rj— )7, (1)
i<j

where Fj; is the spring stiffness matrix, r is the distance between atoms i and j, and the superindices t and 0 stand for current
and equilibrium conformations, respectively. The potential energy expressed as a function of the n ICs is:

1
V=5qHq', (2)
where q is the displacement vector from the equilibrium conformation (q = q' — q°),
>’V
H=(H,;) = 3
( Oﬁv/f) aqaaqﬂ ( )

is the Hessian matrix, and the « and g subindices represent any IC to compute the partial derivatives. In a similar manner, the
kinetic energy can be expressed as:

1...
T=54Tq’, (4)
where the dot operator (superscript) indicates time differentiation and the so-called kinetic energy matrix
or; or;
T=Tu)=) m — —. 5
( 1-/f) Z 1 aqi aqﬂ ( )

Here, the mass of the ith atom is m; and r; stands for the corresponding Cartesian position vector. In the limit of a small
excursion from the equilibrium, the general solutions of the Lagrange equation of motion (L =T — V) are:

n
Q= q + > _aX, CoS(2muyt + 5y), (6)
k=1
where q, and J, depend on the initial conditions, and any k-th mode x, and its associated frequency v, can be obtained by
solving the generalized eigenvalue problem [23]:

HX = ATX, (7)

where X = (X1,Xa,...,X,) and A = diag(1, &, ..., An) With 4 = 27w,)%

In ICs the direct computation of H and T matrices using Egs. (2) and (4) requires O(n*) and O(n?) floating-point arithmetic
operations (flops), respectively. Instead, imop takes advantage of the recursion relationships described in Braun et al. [8] to
reduce the cost of computing these matrices to O(n?). This speed-up transforms the diagonalization (i.e., the solution of (7)
for A and X) into the main computational bottleneck of the NMA. Furthermore, a complete eigenspace computation is not
required since functional motions are only encoded in the lowest frequency part.

3=
D

Fig. 1. Dihedral angles. A single aminoacid of the protein chain is highlighted showing the two canonical backbone dihedral angles, ¢ and y, considered as
variables. Carbon, oxygen and nitrogen atoms are plotted using gray, red and blue colors, respectively. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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3. Solving generalized symmetric definite eigenproblems

The previous section illustrates that the key numerical problem for the analysis of functional motions of macromolecular
complexes via CG-NMA is the solution of a generalized eigenproblem of the form

AX = ABX, (8)

where A,B € R™" correspond, respectively, to the Hessian and kinetic matrices, A € R*® is a diagonal matrix with the s
sought-after eigenvalues of the matrix pair (A,B), and X € R™ contains the corresponding unknown eigenvectors (or
modes); see (7). In ICs, matrices A, B are both dense and symmetric positive definite (SPD). Furthermore, only the smallest
eigenpairs are required (s ~ 100) when dealing with macromolecules (n > 10, 000).

The Krylov-subspace method is a competitive approach for the solution of dense and sparse eigenvalue problems when
only a few eigenvalues are required [2,28]. The method starts by (implicitly or explicitly) transforming the generalized prob-
lem (8) into a standard one in a first stage, to then obtain the sought-after eigenpairs from this simpler form. Specifically,
consider the Cholesky factorization of the SPD matrix B given by

B=U"U, 9)

where U € R™" is upper triangular [17]. The generalized eigenproblem in (8) can then be reformulated into its standard
counterpart

CY=AY = (UTAUT)(UX)=A(UX), (10)

where C € R™" is symmetric (actually, SPD) and Y € R™*. Thus, the standard eigenproblem (10) shares its eigenvalues with
those of the original system in (8), while the generalized eigenvectors of the latter can be recovered by solving the upper
triangular linear system

X:=U"y. (11)

The initial factorization in (9) requires n*/3 flops while recovering the original generalized eigenvectors from (11) adds
n?s flops. In practice, the triangular factor U overwrites the corresponding entries in the upper triangular part of B and both X
and Y use the same matrix, so that these operations do not increase the demand of storage. In case C := U TAU " in (10) has
to be explicitly built, by exploiting the symmetry of the result, the cost of this operation can be reduced to n? flops. However,
our experiments reveal a much higher performance if C is obtained by simply solving two triangular linear systems, at a cost
of 2n? flops, which in practice compensates the increased number of arithmetic operations. Therefore, in the following dis-
cussion and experiments we will assume that, when necessary, C is built by solving two triangular linear systems.

In the subsequent stage, the Krylov-subspace method operates with C or the pair U/A, iteratively approximating the larg-
est eigenvalues of the transformed system. Alternatively, if the smallest eigenvalues are requested, like in a macromolecular
NMA, the largest eigenvalues of the inverse problem can be directly approximated. Two different variants of the Krylov sub-
space method are employed in our work for the solution of the transformed eigenproblem (10):

o Explicit construction of C. This variant, hereafter referred to as ke, explicitly builds matrix C. Each step k of the
Krylov subspace method then performs a (symmetric) matrix-vector product of the form 2z, :=Cw,, with
Zk—12..,Wr_o1... € R" and wy an initial guess, at a cost of 2n? flops per product.

o Implicit use of C. Alternatively, we can keep both A and U so that, at each step of the method, the calculation
Ziar := UTAU 'w is performed as a triangular system solve, followed by a matrix-vector product and, finally, a second
triangular system solve; i.e., z.1 := U™ (A(U 'wy)). In this variant, referred to as i, there is no initial cost to pay for the
explicit construction of C, but the cost per step for the computation of z,,; is doubled with respect to the previous case,
from 2n? to 4n? flops.

In both variants, obtaining wy,; from z,,; requires a few operations of linear cost in n and, in case reorthogonalization is
needed during the present step of the Lanczos iteration (a condition that is data-dependent), the QR factorization of a small
s x s matrix (4s* flops). Upon convergence, the Krylov subspace iteration produces a tridiagonal matrix S of dimension
m x m,m > 2s, whose eigenvalues approximate those of C, and a matrix Q of dimension n x m with the Krylov vectors. Given
that m < n, obtaining the eigenvalues and eigenvectors from S and Q adds a minor theoretical cost to the computations. No
appreciable additional storage space is required by any of the previous variants.

In summary, when dealing with dense coefficient matrices, the Krylov subspace method exhibits a computational cost of
o(n?) flops, basically due to the transformation of the generalized problem into the standard form. Therefore, the solution of
large-scale dense eigenproblems appearing in [C-NMA clearly calls for the application of high performance computing tech-
niques on parallel architectures.
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4. Libraries and Parallelization of the Eigensolvers

In this section we review the libraries used for the implementation of the generalized eigensolvers. The main components
are ScaLAPACK [7], a parallel message-passing library for dense linear algebra computations; the communication application
programming interface provided by MPI [30]; and PARPACK [3], a package of parallel subroutines designed to solve large-
scale eigenvalue problems based on the Krylov method. The remaining functionality is provided by PBLAS, LAPACK, BLAS,
and BLACS; see Fig. 2.

4.1. ScaLAPACK

ScaLAPACK provides a collection of parallel message-passing routines for the solution of a number of dense linear algebra
problems, concretely, linear systems of equations, linear-least squares problems, eigenvalue problems, and numerical rank
computations, among others. ScaLAPACK builds upon two basic libraries: BLACS is a collection of message-passing routines
that use matrices as the basis for communication, which is more natural for linear algebra computations. PBLAS, a parallel
version of the BLAS built on top of this library, provides parallel message-passing routines for basic linear algebra operations
such as products of matrices and the solution of triangular systems.

ScaLAPACK and PBLAS both employ a 2-D block cyclic layout for the data: matrices are partitioned into square blocks of
size b x b (the data distribution blocking factor), which are then distributed following a block-cyclic 2D layout amonga p x q
(logical) grid of processes. The distribution layout determines the communication pattern of the message-passing algorithm,
which transfers data via calls to BLACS (usually built on top of MPI). Standard kernels from LAPACK/BLAS, two well-known
libraries for dense linear algebra operations, are employed for local vector and matrix operations.

4.2. PARPACK

PARPACK is an extension to ARPACK (Arnoldi Package) that can be used to compute a few eigenvalues/eigenvectors of a
symmetric matrix M via an algorithmic variant of the Lanczos process (implicitly restarted Lanczos). The package employs a
reverse communication interface so that no reference is done to M from within it. Instead, the user has to provide the result
for certain matrix-vector products and, when necessary, triangular linear system solves involving M in both cases.

Listings 1 and 2 provide simplified versions, encoded in C, of the parallel message-passing ke and ki eigensolvers. Inserted
comments illustrate the structure of the two variants, the functionality of the invoked ScaLAPACK and PARPACK routines,

Routines used in the
eigensolvers

I
Computation 1 Communication

ScaLAPACK

Implementations of
Krylov—subspace method

1
1
|
: pdpotrf
X PBLAS
: pdtrsm
NEINING S PARPACK \ pdsymv
X pdtrsv
! PARPACK
I
1
1
I
:
-

pdsaupd

pdseupd

Parallel message—passing

Sequential \\'\

BLACS

MPI

Fig. 2. Libraries (and routines, in the panel to the right) employed in the construction of the parallel message-passing implementations of the Krylov-
subspace eigensolvers.
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and the reverse communication mechanism. In particular, note how the two PARPACK routines, pdsaupd and pdseupd, do
not access the matrix entries (indeed they do not receive the pointer to the matrix A as part of their arguments). Instead, it is
the user who is responsible for calculating certain operations involving the matrix via calls to pdsymv (for both ke and i) and
pdtrsv (only for ).

Listing 1. Implementation of variant ke using ScaLAPACK + PARPACK (simplified).

/| KE: Variant with explicit construction of C
// Inputs: Matrix pair (A,B), both of dimension n x n; number of requested eigenvalues s
/| Outputs: eigenvalues in vector d, of lenght n, and eigenvectors in X of dimensionn x s
int ido =0, iter =0, info =0;
double dtol =0.0, done =1.0, dzero =0.0;
double *w = NULL, *z = NULL;
/| 1. Transform into the associated standard eigenvalue
[[1.1B = UT U; overwrite upper triangular part of Bwith the Cholesky factor U
pdpotrf ("Upper'", &n, B, ...);
/[ 1.2 C:=U"-T AU"-1; overwrite A with the solution. Upper triangular factor in B
pdtrsm ("Right", "Upper", "No transpose", "No-unit", &n, &n, &done, B, ..., A, ... );
pdtrsm ("Left", "Upper", "Transpose", "No-unit", &n, &n, &done, B, ..., A, ... );
/| 2. Krylov subpace iteration for the variant
/| 2.0 Generate w_0; initial guess returned in WORKD
pdsaupd (..., &ido, ..., &n, ..., &s, &tol, ..., &m, Q, ..., IPNTR, WORKD, ..., &info);
while (ido!=99) {
iter++;
/| 2.1 Form z_k+1 :=Cw_k; Cis in A
w = WORKD + IPNTR[O] - 1;
z =WORKD + IPNTR[1] - 1;
pdsymv ("Upper", &n, &done, A, ..., w, ..., &dzero, z, ... );
/] 2.2 z_k+1 -> w_k+1; w and z in WORKD
pdsaupd (..., &ido, ..., &n, ..., &s, &tol, ..., &m, Q, ..., WORKD, ..., &info);}
/| 2.3 8,Q -> Lamba,Y; S in WORKD, eigenvalues in d, Ritz vectors in X
pdseupd (..., &s, ..., d, X, ..., &s, &tol, ..., &m, Q, ..., IPNTR, WORKD, ..., &info);
/| 3. Back-transform
/| 3.1 X :=U"-1Y. Overwrite Ritz vectors in X with eigenvectors of the problem
pdtrsm ("Left", "Upper", "No transpose'", "No-unit", &n, &s, &done, B, ..., X, ... );

For the small-scale experiments reported in the next section, when the data matrices fit into a single node of the target
platform, we have also implemented more efficient eigensolvers that replace the calls to ScaLAPACK/PBLAS/PARPACK by
analogous routines from LAPACK/BLAS/ARPACK. These implementations thus avoid the overhead intrinsic to message-pass-
ing communication, but their structure, functionality and usage of reverse communication are very similar to those illus-
trated in the listings.

Table 1
Benchmark of large-scale biological macromolecules. *In this case all heavy atoms were taken into account, in the rest a C, model was used instead [21].
"Modelled with FilaSitus [35]. *Kindly provided and MD optimized by M. Deriu [14].

Acronym Name PDB id. DOFs

GroEL/ES GroEL/GroES 1sx4 15,870

ER Eucariotic Ribosome* 2Xsy,2xtg 36,488

CcCMV Cowpea chlorotic mottle virus lcwp 56,454

HBV Hepatitis B virus 1qgt 66,234

VP Vault protein 2zu0,2zv4,2zV5 119,486

F-actin Actin filament lesv’ 141,297

MT Microtubule 13:3 1tub? 148,111 (908,954)
HK97 Hong Kong 97 virus Head Il 2ft1 149,231 (227,154)

NwV Nudaurelia capensis omega virus lohf 149,506 (264,654)
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Listing 2. Implementation of variant ki using ScaLAPACK + PARPACK (simplified).

/| KI: Variant with implicit use of C
// Inputs: Matrix pair (A,B), both of dimension n x n; number of requested eigenvalues s
// Outputs: eigenvalues in vector d, of lenght n, and eigenvectors in X of dimensionnx s
int ido =0, iter =0, info =0;
double dtol = 0.0, done =1.0, dzero = 0.0;
double *w = NULL, *z = NULL;
/| 1. Transform into the associated standard eigenvalue
/| 1.1 B =U"T U, overwrite upper triangular part of Bwith the Cholesky factor U
pdpotrf ("Upper'", &n, B, ...);
/| 2. Krylov subpace iteration for the variant
/| 2.0 Generate w_0; initial guess returned in WORKD

pdsaupd (..., &ido, ..., &n, ..., &s, &itol, ..., &m, qQ, ..., IPNTR, WORKD, ..., &info);
while (ido!=99) {
iter++;

/] 2.1 Form z_k+1 :==U"-T AU -1 w_k; Cis in A
w = WORKD + IPNTR[O] - 1;
z =WORKD + IPNTR[1] - 1;

pdtrsv ("Upper", "No transpose", "No-unit", &n, B, ..., w, ...);

pdsymv ("Upper", &n, &lone, A, ..., w, ..., &dzero, z, ...);

pdtrsv ("Upper", "Transpose'", "No-unit", &n, B, ..., z, ...);

/| 2.2 z_k+1 -> w_k+1; w and z in WORKD

pdsaupd (..., &ido, ..., &n, ..., &s, &itol, ..., &m, Q, ..., WORKD, ..., &info);

/| 2.3 8,Q -> Lamba,Y; S in WORKD, eigenvalues in d, Ritz vectors in X

pdseupd (..., &s, ..., d, X, ..., &s, &tol, ..., &m, Q, ..., IPNTR, WORKD, ..., &info);

/| 3. Back-transform

/|3.1 X:=U"-1Y. Overwrite Ritz vectors in Y with eigenvectors of the problem
pdtrsm ("Left", "Upper", "No transpose", "No-unit", &s, &n, &done, B, ..., X, ...);

4.3. Optimizing ScaLAPACK Cholesky factorization via SMPSs

ScaLAPACK was designed in the 90s when the majority of distributed-memory supercomputers had a single processor per
node. Two straight-forward conventional approaches to adapt the kernels in this library to the current multicore nodes is to
place one MPI process per core, or to place a single MPI process per node and exploit the parallelism via a multithreaded
implementation of BLAS. Given a message-passing routine from ScalAPACK, both options provide a transparent
parallelization.

As an alternative, in this paper we leverage a message-passing implementation of the Cholesky factorization from ScalL-
APACK parallelized via SMPSs [25], a portable and flexible framework to exploit task-level parallelism on shared-memory
multiprocessors (including multicore processors). SMPSs is composed of i) a few OpenMP-like pragmas, which allow the pro-
grammer to annotate certain functions in the code as tasks; ii) a source-to-source compiler; and iii) a runtime that detects
dependencies among tasks and efficiently schedules them for execution in due order, attaining dynamic load balancing.

When applied to parallelize dense linear algebra operations on current multicore processors, SMPSs has demonstrated
superior performance over the traditional approach based on LAPACK + multithreaded BLAS [4], much like other tools spe-
cifically designed for the dense linear algebra domain [9,26]. For the execution of message-passing dense linear algebra oper-
ations on clusters, SMPSs has also shown to yield higher performance to the conventional approaches on a related operation
like the symmetric rank-k update [5].

5. Experimental Results

The experiments in this subsection were obtained using IEEE double-precision arithmetic on a 16-node cluster, each node
equipped with two Intel Xeon E5520 (hexacore) processors at 2.27 GHz and 24 Gbytes of RAM. The (theoretical) peak per-
formance is 108.96 GFLOPS (1 GFLOPS = 10° FLOPS) for a single node (12 cores) and 1,743.40 GFLOPS for the complete plat-
form (192 cores/16 nodes). The memory of the system allowed us to tackle the simulation of macromolecules leading to
eigenvalue problems with n < 42,000 on a single node, and n < 150,000 using the aggregated memory of all nodes.

The interconnect is an InfiniBand QDR fabric, with Mellanox ConnectX-2 adapters linked to a single Mellanox MTS3600
switch. The libraries employed were OpenMPI (GNU-4.1.2.20080704), Mellanox OFED 1.5.3 (InfiniBand drivers and
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administrative tools), GotoBLAS2 1.13, LAPACK 3.4.0, ScaLAPACK 2.0.0, ARPACK/PARPACK 2.1, and SMPSs 3.5. Unless other-
wise stated, in all the test cases we computed the smallest s = 100 eigenpairs and set m = 250 for the Krylov subspace method
underlying PARPACK.

5.1. Benchmarks

The diagonalization strategies have been validated with a set of representative large macromolecules. This benchmark
includes filaments, compartmental or chaperonin macromolecules, and several viral capsids; see Table 1. The number of
variables of the examples ranges from n ~16,000 to ~150,000. In the largest test cases (MT, HK97 and NwV), a reduction
of the total number of DOFs (inside parenthesis in the corresponding column of the table) was required to conform the
aggregated memory of the target cluster. To this end, we randomly removed around 85% of the MT dihedral angle variables,
and 35% and 45% in the two largest viral cases (HK97 and NwV) as described in [21].

5.2. Small-scale experiments

When dealing with dense eigenproblems, the conventional approach is to employ a “direct” solver from LAPACK. For the
generalized symmetric definite case, this implies initially transforming the generalized eigenproblem to a standard case (see
(10)), followed by a two-stage procedure that first reduces the coefficient matrix C to tridiagonal form via orthogonal trans-
forms, and then obtains the eigenpairs of the tridiagonal matrix via an iterative method such as the QR or MR? algorithms
[17]. The computation is completed by recovering the eigenvectors of the generalized eigenproblem from those of the trans-
formed case (as in (11)). The costs of the initial transform and final recovery equal those discussed in Section 3, while the
two-stage procedure adds 4n3/3 + 2n?s flops. As we will illustrate next, even for dense eigenvalue problems, this approach
is rarely competitive with the Krylov subspace method when only s < n eigenvalues are requested; see [2] for a detailed
study on multicore processors and GPUs.

In this initial experiment we evaluate three different solvers: LAPACK direct solver dsyevr (MR? as tridiagonal solver),
and variants ke and ki of the Krylov subspace method. The experiments are carried out on 12 cores of a single node of the
cluster, for a variety of dimensions (n) of benchmark CCMV (from 1,000 to the largest problem size that fit into one single
node, about 40,000). As we employ only one node, these solvers are implemented using LAPACK/ARPACK/BLAS libraries, ex-
ploit multithreaded parallelism, and avoid the overhead associated with the use of kernels from the message-passing coun-
terparts of these libraries.

Fig. 3 reports the execution time of the three solvers normalized with respect to those of ki, linked to the multithreaded
implementations of LAPACK/BLAS provided by GotoBLAS2. Compared with «i, the figure clearly shows the rapid increase of
the execution time incurred by the LAPACK routine as the problem dimension grows, which is due to the fixed additional
cost of cubic order in n incurred by the explicit construction of C and its reduction to tridiagonal form performed in the LA-
PACK solver. The results also show that the advantage of variant ki over variant ke grows with the problem size. This is also
caused by the higher fixed cost of cubic order in n for the explicit construction of C required in variant ke. Experiments with
other benchmarks, less than 12 cores, and Intel MKL (10.3) for BLAS and LAPACK showed close results, leading to similar

Solvers Linked to GotoBLAS2
6 T T T T T - - -
—o—KI
—A—KE
—s— LAPACK

Time normalized w.r.t. Kl

1;5;///// |
5000 10000 15000 20000 25000 30000 35000 40000
Matrix Dimension

Fig. 3. Performance of the eigensolvers on small-scale instances of benchmark CCMV using 12 cores/single node.
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conclusions from this initial study. Therefore, in the following experiments with large-scale macromolecules we will only
consider the iterative variants of the Krylov subspace method, discarding the LAPACK approach.

5.3. Large-scale experiments

We next compare the performance of two message-passing implementations of the ke and ki variants of the Krylov sub-
space method:

e Reference. This implementation employs a pure MPI approach with intra-node concurrency exploited by placing one
MPI process per core (i.e., 12 MPI processes per node).

e MTBLAS. This is a hybrid parallel approach with one MPI process per node and parallelism extracted at the node level with
a multithreaded implementation of BLAS.

A best effort was done to utilize the optimal grid configuration, block sizes, etc. for each implementation, variant, and prob-
lem size.

Solvers Linked to GotoBLAS2

—o— Kl+Reference

—2&— KE+Reference
[| —=— KI+MTBLAS
—»— KE+MTBLAS

Time normalized w.r.t. KI+Reference
(4]
T

—a i

1‘}5/\:'

20000 40000 60000 80000 100000 120000 140000
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Cholesky Linked to GotoBLAS2
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Fig. 4. Performance of the eigensolvers on large-scale instances of benchmarks CCMV (n <50,000) and HK97 (n >50,000) using all 192 cores/16 nodes
(top), and percentage of time spent in the Cholesky factorization for the ki + Reference eigensolver (bottom).
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Table 2
Execution time (in secs.) of the different stages in the ki + Reference eigensolver with on the n = 100,325
instance of benchmark HK97 using all 192 cores/16 nodes.

Operation (routine) GotoBLAS2
B=U"U (pdpotrf) 274.29
Zie1 == U 'wy (pdtrsv) 54.96

Zji1 = CZyq (pdsymv) 68.35

Ziwt = U"TZ,q (pdtrsv) 72.15

Zjy1 — Wieyq (pdsaupd) 0.43

H,V — AY (pdseupd) 0.08
X:=U7'Y (pdtrsm) 3.96

Total 476.38

Table 3

Execution time (in secs.) of the parallel routines for the Cholesky factorization of a SPD matrix using all 192 cores/16 nodes.
Matrix dimension Reference MTBLAS MPI/SMPSs
10,560 1.52 1.60 1.30
50,000 43.83 169.22 32.17
75,000 123.69 199.24 98.24
100,000 266.47 360.60 250.87
125,000 487.74 650.14 492.41

The first experiment with large-scale dimension problems, in Fig. 4 (top), reports the performance of these four imple-
mentations (combinations of ke/ki with Reference/MTBLAS) on all 16 nodes and 192 cores of the cluster using benchmarks
CCMV (n <50,000) and HK97 (n >50,000). In this case, all results are normalized with respect to the Re ference implemen-
tation of variant xi. The trend in the two plots is coherent with the results reported in the previous section: as n grows, the
implicit variant outperforms the explicit one by a larger factor. The second conclusion that can be extracted from this exper-
iment is that, in general, it is better to rely on a parallelization that employs one MPI process per core, especially as the prob-
lem size grows. In the next experiment, we therefore concentrate on this combination: variant xi parallelized with the
Reference approach.

Let’s examine now how the execution time of variant ki + Reference is distributed for one of the instances of benchmark
HK97, say n = 100,325, in the previous experiment. Table 2 reports the execution time of the stages that compose this solver
(see the explanation in Section 3 and Listing 2). In the results for the two invocations of pdtrsv, and the single ones to
pdsymv and pdsaupd, we accumulate the total execution time corresponding to all the iterations necessary for convergence
of the Krylov subspace method. This experiment reveals that the first four routines substantially dominate the cost of the
eigensolvers (more than 98% of the total time), with the Cholesky factorization being the most expensive one. In particular,
the factorization occupies around 57% of the execution time with this fraction growing with n up to 64% for the largest prob-
lem size, and clearly becoming a performance bottleneck for the solution of large-scale problems; see Fig. 4 (bottom). This
justifies the usage of an alternative parallelization of the factorization routine, based on the combination of MPI with SMPSs,
that yields higher performance for certain ranges of the problem dimension.

Table 3 shows the impact of this new parallelization of the Cholesky factorization, comparing it with the conventional
Reference and MTBLAS approaches, for SPD matrices of dimension up to 125,000. These results demonstrate the compet-
itive performance of the MPI /SMPSs alternative, concretely when the ratio between the problem size and the number of
cores is moderate. The acceleration achieved within this range is very appealing and relevant from the application point
of view, since in many situations, the IC-NMA is applied multiple times to the same macromolecule in order to simulate
a motion trajectory. This calls for the utilization of a large number of cores for the solution of each eigenproblem, even
for cases of small to moderate size.

5.4. Application

In this section, we briefly describe and comment the results obtained by applying the proposed parallel diagonalization
methods to the benchmark macromolecules (see Table 1). In all cases, the eigensolver ki + MPI /SMPSs yields very satisfactory
results in terms of both accuracy and efficiency. For the first time, to our knowledge, NMA of several systems up to 150,000
DOFs are presented. Moreover, as reported in Table 4, the use of all 192 cores/16 nodes of the cluster provided enough aggre-
gated memory and computational resources to solve such large eigenproblems in few minutes. For example, less than 9 min
were needed to solve a problem with almost 100,000 DOFs, and only ~20 min to handle a system ~50% bigger. By contrast,
the diagonalization routine used in the original imop (Intel MKL dspgvx) took several days to solve a problem with 100,000
DOFs on an Intel Xeon E5-2650. This considerable speed up currently allows us to rapidly predict the motions of
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Table 4
Execution time (in secs.) to solve the eigenproblems associated with the large-scale macromolecules using all
192 cores/16 nodes.

Acronym DOFs Time
GroEL/ES 15,870 16.21
ER 36,488 57.65
CCMV 56,454 124.64
HBV 66,234 172.55
VP 119,486 723.39
F-actin 141,297 1,027.81
MT 148,111 1,267.07
HK97 149,231 1,306.95
NwV 149,506 1,315.61

macromolecular systems of size and structural detail never explored before. The results are in full agreement with consid-
erably more modest resolution results found in the literature. In the following, we briefly comment the relevant motions
characterized by our IC-NMA approach.

Ribosomes are the nano-factories for translating the genetic code into proteins. This protein and nucleic acid macromol-
ecule adopts many conformational states to support its function. For the illustration of its dynamical behavior, an animation
of the ratcheted-like motion and some more local rearrangements are included (see Online Resource 1). This well-known
motion has been validated experimentally, and even by NMA [11].

Although newly-synthesized proteins naturally fold into their active 3D conformation, some require further assistance.
Chaperonins provide the suitable environment and mechanical forces to facilitate folding. GroEL/ES chaperonin is formed
by two identical rings with a small cap that encloses the folding chamber. The binding of an unfolded substrate triggers com-
plex dynamical events, such as substrate internalization, entrance blocking, folding and release. NMA is able to describe
many of these highly collective motions (see for instance [34]). For example, we have animated some modes that could
be involved in substrate internalization and folding (see Online Resource 2).

Cellular shape is mainly maintained by large filaments of proteins. Among them, microtubules and actin filaments (F-ac-
tin) also play relevant roles in dynamical processes such as cell division, mobility, intracellular transport or muscle contrac-
tion. The modal motions inherent to the filament-like macromolecular structure include bending, stretching and torsion
displacements. The relevance of such motions has been already highlighted in [13,14]. In Fig. 5, the first three bending modes
for the F-actin are shown. Online Resources 3 and 4 respectively include some of these representative modes for microtu-
bules and F-actin.

The viral life cycle involves several stages including infection, genetic material replication, viral precursor assembly, and
maturation into the infective particle. These processes generally involve large concerted rearrangements of coating proteins
and nucleic acids. The success of NMA in the exploration of viral collective conformational changes has been widely proven.
However, these studies were performed either taking advantage of the icosahedral symmetry of the system [33] or consid-
ering each protein chain as a single rigid block [31]. By contrast, our NMA formulation in ICs can work directly at atomic level
representation, even without considering explicitly the system symmetry. For example, the collective swelling motions re-
lated to maturation of CCMV, HK97 and NwV viruses described in [31] have been characterized with our approaches. In Fig. 6
some representative modal displacements of the CCMV are shown, including those corresponding to the swelling motion
(32nd mode). Some of these motions are animated in Online Resources 5 and 6 for CCMV and HBV viruses, respectively. Nev-
ertheless, several non-viral proteins can form virus-like shells which may also exhibit dynamical behavior. For example, in

Fig. 5. Illustrative actin filament bending motions. The first three bending modes (1, 3 and 5) computed from the straight experimental structure are
shown. See animations in supplementary online resources.
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Fig. 6. Illustrative modal displacements of the CCMV virus. The NMA was performed from the experimental atomic structure (colored surface). Each arrow
shows the computed displacement of a single viral chain for the indicated mode.

k

" i\\ 7 / S 2>, ?‘J'\
NS R

Online Resource 7 it is shown how the compartmental structure acquired by the major vault protein would swing and
stretch around its equilibrium conformation.

In summary, by effectively solving large-scale generalized eigenvalue problems on distributed-memory clusters, we
greatly extend the applicability of IC-NMA towards much larger systems. The main contribution is a practical demonstration
of successful and quick predictions of collective motions of large macromolecules that were very hard to obtain so far. Fur-
thermore, the use of the normal modes in simulation applications such as Langevin dynamics, Montecarlo simulations, con-
formational transitions or structural refinement is typically based on an iterative process in which the vibrational analysis is
repeated multiple times. For example, in the simulation of the structural transition between two known conformations
(iMorph tool in [21]), the NMA is applied more than 100 times to calculate a feasible smooth trajectory. In this context,
the drastic reduction of time is even more relevant. Thus, our new parallel approach provides a fast method to employ in
a recursive way the NMA of large macromolecular systems.

6. Concluding remarks

In this paper we have evaluated the application of the Krylov method to model the functional motions of large-scale mac-
romolecular machines. By extending the applicability of IC combined with NMA, we thus expedite the study of the collective
conformational changes of relevant biological systems opening a new window for capturing their functional motions at re-
duced cost.

Our experimental results using a moderate-scale cluster, with 16 nodes and equipped with state-of-the-art multicore
technology, show the superior performance of the implicit variant of the iterative Krylov method over the explicit one as
well as a direct eigensolver, all of them implemented on top of linear algebra libraries. Thus, the new parallel methods yield
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the sought-after models for the large-scale NMA of large macromolecules, with almost 150,000 degrees of freedom, in
slightly over 20 min, while using a sequential algorithm for the same purpose would have required a platform with over
384 GBytes of memory, and almost 3 days of computing time, assuming similar algorithm performance.

Future work will be focused on the integration of our parallel IC-NMA approach into more advanced simulation applica-
tions. The computational savings achieved here will allow, for the first time, to carry out such simulations with large size
macromolecules. We think this new avenue to explore the collective motions of the main actors of the biological processes
will be crucial for understanding their biological functions.

7. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/
j.jcp.2013.03.032.
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