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The dynamic simulation of macromolecular systems with

biologically relevant sizes and time scales is critical for

understanding macromolecular function. In this context,

normal mode analysis (NMA) approximates the complex

dynamicalbehaviourofa macromoleculeas a simple setof

harmonic oscillators vibrating around a given equilibrium

conformation. This technique, originated from classical

mechanics, was first applied to investigate the dynamical

properties of small biological systems more than 30 years

ago. During this time, a wealth of evidence has accumu-

lated to support NMA as a successful tool for simulating

macromolecular motions at extended length scales.

Today, NMA combined with coarse-grained representa-

tions has become an efficient alternative to molecular

dynamics simulations for studying the slow and large-

amplitude motions of macromolecular machines. Inter-

esting insights into these systems can be obtained very

quickly with NMA to characterise their flexibility, to pre-

dict the directions of their collective conformational

changes, or to help in the interpretation of experimental

structural data. The recently developed methods and

applications of NMA together with an introduction of the

underlying theory will be briefly reviewed here.

Introduction

A detailed knowledge of the structure and dynamics of
macromolecular systems permits a deep understanding of
biological processes and leads to advances in the rational
discovery of disease treatments. The main functions of
living cells (replication, transcription, translation, folding
and protein turnover) are usually governed by large mac-
romolecular complexes (polymerases, ribosomes, chaper-
onins and proteasomes). For example, the ribosomal
machinery produces new proteins according to the
genetic code; the chaperonin proteins assist with the fold-
ing of these newly formed proteins; and tubulin and actin
filaments support cellular shape. These macromolecules
are in perpetual motion, following thermal fluctuations
and undergoing energy-dependent conformational re-
arrangements to accomplish biological functions. The
magnitude of such motions ranges from a few Angstroms
(Å=10210m) to hundreds of Å, and their associated time
scale ranges from picoseconds to seconds (see Figure 1).
Thermal fluctuations of bond lengths and angles occur on a
relatively small scale (51 Å) but occur very fast (picose-
conds). On the other end of the spectrum, large-scale
rearrangements occur on a much longer time scale, from
hundreds of nanoseconds to even seconds. Such rearran-
gements include folding of the protein from the nascent
polypeptide chain, or changes in the 3D structure due to
interaction with a ligand or another macromolecule. For
example, in Figure 1, two crystallographic structures of the
adenylate kinase in different conformations evidence the
large conformational rearrangements undergone upon
ligand binding. Unfortunately, the direct experimental
observation of the functional motions is often not possible
using current high-resolution techniques; therefore,
computational methods are the only way to study these
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important conformational changes in detail. The most
common computational technique used to study the
dynamical properties of biological molecules is molecular
dynamics (MD). InMD, the systemevolves as a functionof
time by iteratively integrating Newton’s equations of
motion. However, even though computational methodol-
ogy and processing power have been improving sig-
nificantly, the application of MD to large-scale
macromolecular assemblies is limited to relatively short
time scales, due to the computational complexity of
all-atom MD simulations (see Figure 1). Time scales of
functionalmotions in largemacromolecular assemblies are
still computationally intensive and highly impractical. For
example, the 100 ns simulation for a relatively small protein
filament in explicit solvent (approximately 2000 amino
acids and 300 000 atoms) takes 3 days using 512 processors
in state-of-the-art computational resources. Thus, it would
take too long to reach more relevant time scales (milli-
seconds) for large-scale rearrangements. An alternative
approach to extend simulation times is the use of coarse-
grained representations (Ingólfsson et al., 2014), this
reduces the numberof atomsnecessary for simulation.This
type of simplification enables microsecond time scales to
be reached, at least for small proteins. However, such
calculations are still computationally expensive for

large macromolecular assemblies and slow/large-ampli-
tude motions. See also: Molecular Dynamics
A less time-consuming alternative to simulate large or

slow conformational rearrangements for large biological
molecules is normalmode analysis (NMA) (Bastolla, 2014;
Cui and Bahar, 2010). This approach, commonly used in
physics, was introduced in structural biology around 30
years ago to study the dynamics of the biological macro-
molecules (Brooks and Karplus, 1983; Go et al., 1983;
Levitt et al., 1985).AlthoughMDapproximately solves the
equations of motion using a realistic force field, NMA
obtains the exact solutions, but for a simplified force field.
The basic assumption (and limitation) of the vibrational
analysis is that the potential energy of the system varies
quadratically about a given minimum energy conforma-
tion. Based on this harmonic approximation, NMA ana-
lytically solves the equations of motion (Lagrangian or
Hamiltonian) in a matter of minutes. The resulting
solutions are a set of orthogonal displacement vectors (or
normal modes) with their corresponding frequencies,
which encode all possible motions around the initial con-
formation. The modes are sorted according to the energy
required for their movement; while the high-frequency
modes represent high-energy localised displacements, low-
frequency modes correspond to low-energy collective
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conformational changes. These collective movements are
closely related to functional motions detected experimen-
tally by crystallography and nuclear magnetic resonance
(NMR) or observed in MD simulations. Therefore, NMA
can be used as a frequency filter for reducing the dimen-
sionality of the system and for separating the essential (col-
lective low-frequency modes) from the nonessential (local
high-frequency modes) movements. Such dimensionality
reduction facilitates the interpretation of low-resolution
experimental data. In summary, the characterisation of the
essential motions permits us to obtain useful predictions
about the dynamics, long-range coupling, allosteric regula-
tion, and elastic properties of biological molecules. Fur-
thermore, the necessary flexibility required during catalysis
or when two or more biomolecules interact can be often
approximated by a few normal modes.
In this article, we will introduce the computational

technique of NMA, which has widely proven useful for
analysing the functional motions of large biological
molecules. The focus is limited to introducingNMAtheory
with a brief description of recently developedmethods and
their applications. Comprehensive overviews, applica-
tions, anddiscussions about theNMAmethodology canbe
found in Further reading materials.

Normal Mode Theory

Using the classical mechanics formulation of NMA
(Goldstein et al., 2002), the complex dynamical behaviour
of a macromolecule can be approximated as a simple set of
harmonic oscillators vibrating around a given equilibrium
conformation (Bastolla, 2014; Cui and Bahar, 2010). This
mechanical system consists ofN atoms under a given force
field and located at positions r=(r1,_, rn,_, rN), where rn
represents the Cartesian coordinates (xn,yn,zn) of the atom
n. The time evolution of the system is uniquely defined by
theHamiltonian,which is simply the sumof thekineticK(r)
and the potential U(r) energy terms:

HðrÞ5KðrÞ þUðrÞ ð1Þ

The Taylor expansion of the potential energy function
around an equilibrium conformation (r0) gives:

UðrÞ5Uðr0Þ þ
X3N
i
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where ri and rj are the 3N Cartesian coordinates of r.
Because r0 is by definition at a minimum of the energy
function, @U/@ri(r

0) vanishes.Moreover, the terms beyond
the second order can be neglected for small displacements,
that is, assuming that the potential energy of the system
varies quadratically about r0. This basic assumption (and a
latent limitation) is founded on the observation that

biomolecules behave, more than expected, as if the energy
surface were parabolic, even though the potential contains
many local minima (see Figure 2). Then, after defining the
potential energy of the reference structure asU(r0)=0, the
potential energy function can be approximated as:
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The kinetic energy function is defined by:

KðrÞ51

2

X3N
i
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dri
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ð4Þ

where mi corresponds to the mass of the atom with coor-
dinate i. For convenience, the Hamiltonian (eqn (1)) is
rewritten in mass-weighted coordinates, Xi=mi

1/2(ri2ri
0),

from eqns (3) and (4):
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where the dot over the X indicates the time derivative. The
oscillatory motions corresponding to this Hamiltonian are
coupled. In other words, the displacement of a given
coordinate depends on the displacements of the others (see
Figure 2). Fortunately, themotions can be reformulated as a
superposition of independent (uncoupled) harmonic
oscillators by choosing the appropriate normal mode
coordinates (q). The mass-weighted Cartesian and normal
mode coordinates are linearly related by:

X5Aq ð6Þ

where A is an orthonormal transformation matrix; thus
satisfying:

ATA5I ð7Þ

The main consequence of using these new coordinates is
that the kinetic and potential energy terms from eqn (5) can
be further simplified. Using eqns (6) and (7) to simplify the
kinetic energy, and converting the summation into matrix
form, we get:

KðqÞ51

2

X3N
i

_X 2
i 5

1

2
_XT _X5

1

2
_qTATA _q5

1

2
_qT _q ð8Þ

For simplifying the potential energy, the Hessian matrix
H(X)ij=@2U/@Xi@Xj can be transformed into the normal
mode coordinates using A:

Hð qÞ5ATHðXÞA5K ð9Þ

where the matrix to be determined A diagonalizes H,
and K=diag(l1,l2,_,l3N) is the resulting diagonal
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matrix. Thus, the potential energy in normal mode basis
becomes:

UðqÞ51

2

X3N
k

X3N
l

qkA
THðXÞAql5

1

2
qTKq ð10Þ

where indices k and l correspond to the 3N normal mode
coordinates. Finally, after reverting the matrix notation of

eqns (8) and (10) to summations, the transformed Hamilto-
nian uncouples as a set of independent harmonic oscillators:

HðqÞ5 1
2

X3N
k

_q 2
k þ

1

2

X3N
k

lkq2k ð11Þ

Note that the cross-terms found in the Hamiltonian of
eqn (5) have disappeared. In practice, the transformation
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Figure 2 Normal mode theory. (a) Description of a simple harmonic oscillator: A particle m is attached to a spring with a force constant k and its

displacement is x. (b) Normal mode analysis: harmonic approximation of the potential energy surface. For any biological system, the real energy surface is

rugged (dotted line) but for the normal mode analysis, the surface is approximated as a harmonic surface (plain line). (c) Normal mode coordinates are

independent (uncoupled) but not Cartesian coordinates (coupled). Although the contour lines represent the equipotential points of a parabolic force field in

a two-dimensional space, the blue and red axis correspond to Cartesian (X) and normal mode (q) systems of coordinates, respectively. When some particle is

released at any of the normal mode axes, its trajectory stays on this axis. In contrast, when the particle is released at some other point, its motion needs to be

described by both Cartesian axes. (d) Simple normal mode vectors for the water molecule. Each arrow represents the direction of motion that each atom will

undergo as obtained from normal mode theory. The three distinct motions predicted by NMA for the water molecule, i.e. symmetric and asymmetric

stretching modes plus a bending mode, are in agreement with experimental observations.
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matrix A and the diagonal matrix K are determined by
solving the standard eigenvalue problem, that is, diag-
onalizing the Hessian matrix H(X):

HA5KA ð12Þ

The transformation A=(a1,_, ak,_, a3N) contains the
eigenvectors (ak), and the diagonal matrix K contains the
corresponding eigenvalues (lk). Each pair of eigenvector
and the associated eigenvalue (ak, lk) is known as a normal
mode and represents one independent oscillator. Although
the eigenvector provides the relative amplitudes of the
collective atomic oscillations in mass-weighted Cartesian
coordinates, the eigenvalue lk determines the oscillation
frequency (nk=lk

1/2/2p) which is the same for all atoms. Six
of the modes have zero frequency (null modes) and corre-
spond to the rigid body motions (three translations and
three rotations) of themacromolecule. Since they represent
trivial motions they are usually removed from summa-
tions. Thus, the dynamics of the system can be concisely
described as a linear combination of 3N26 independent
normal mode oscillators:

qk5bkcosð2pvktþ jkÞ ð13Þ

The bk and jk are the maximum-amplitude and phase
variables, respectively, and are determined by the initial
conditions. To convert the motions from normal coordi-
nates to Cartesian coordinates, eqn (6) must be employed
first to obtain the mass-weighted Cartesian displacements,
and then the simple formula (ri2ri

0)=mi
21/2Xi to revert

such weighting.
As a simple example, Figure 2d shows the resulting normal

mode vectors obtained for a water molecule. NMA reveals
three well known motions of the water molecule, that is, the
symmetric and asymmetric stretching modes plus the bend-
ingmode.The frequencies obtained from thesemodes canbe
directly related to infrared experiments for which bond
bending and stretching can be experimentally observed.
If the system is in thermal equilibrium, statistical ther-

modynamics theory states that the average energy of each
mode is equal to kBT/2, where T is the absolute tempera-
ture and kB the Boltzmann constant. Thus, the average
squared fluctuations of the qk normalmode coordinate can
be estimated using the potential energy of a single mode
(Uk=lkkqk2l/2):

kq2kl5
kBT

lk
5

kBT

ð2pnkÞ2
ð14Þ

The average of the squared atomic fluctuations in Car-
tesian coordinates can be obtained from eqns (6) and (14)
after reverting the mass-weighting:

kðri2r0i Þ
2l5

1
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X3N26

k

a2kikq
2
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X3N26

k
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ð15Þ

where aki is the i-th component of the k-th eigenvector
(aki=@Xi/@qk). From this equation, it is evident that the

largest contribution to the atomic displacement comes
from the lowest frequency/energy normal modes. These
modes represent the most collective motions, that is, a
large number of atoms with significant displacements (aki).
Conversely, only a few atoms contribute to the motion
(local) in high-frequency/energy eigenvectors. Lowest fre-
quency modes actually correlate well with experimentally
observed conformational changes in proteins and nucleic
acids. Probably, such modes are relevant for biological
functions because large conformational changes can be
induced at a lower energetic cost by perturbations such as
ligand binding or environmental changes (pH, ionic
strength, temperature, etc.). Thus, studies employing
NMA generally focus on these modes (Tama and Sane-
jouand, 2001). Figure 3 shows several collective and local
normal modes of the adenylate kinase protein. In low-
frequency modes (top) almost all the atoms are experien-
cing a concertedmotion however, in high-frequencymodes
(bottom), only a few are moving together.

Potential Energy Functions for
Normal Mode Analysis

NMAis usually performedusinga high-resolution structure
of the biological molecule determined from X-ray crystal-
lography or NMR. In the classical NMA approach, the
potential energy terms for atomic interactions are definedby
standardMD force fields. This NMA approach requires an
initial energy minimisation step to ensure that the structure
is at aminimumof the potential energy function.Otherwise,
negative frequency modes may arise due to unstable equi-
librium conditions. These minimisation procedures are not
computer intensive compared with MD simulations but
they require user time and expertise. Instead of using a
detailed forcefield,Tirion (1996) pioneered the combination
of NMA with a simplified protein representation (the so-
called ‘elastic networkmodel’ (ENM)) to reproduce the low-
frequency normal modes calculated from detailed potential
energy functions. In the ENM, the potential energy is
assumed quadratic in the displacements, as in Hookean
springs (see Figure 2), and corresponds to a three-dimen-
sional elastic network of harmonic springs that keeps the
atoms together. It is defined by:

UðrÞ5
XN
n5m

1

2
fnmr

2
nm if jr0n2r0mj � R ð16Þ

where rnm is the distance increment from the reference
position of atoms n and m (rnm=|rn2rm|2|rn

02rm
0 |), fnm is

the force (or stiffness) constant of the corresponding
spring, and R is a distance cutoff to neglect long-range
interactions. The spring constants are typically assumed to
be the same for all interacting pairs (fnm=k), but they can
be tuned to improve the predictions in proteins (Orellana
et al., 2010) and nucleic acids (Setny and Zacharias, 2013).
The distance cutoff is typically set from 5 to approximately
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12 Å depending on the case. Notably, Tirion’s potential
energy function is, bydefinition, at the energyminimum for
any chosen input conformation. Thus, in practice, NMA
can be performed directly on crystallographic or NMR
structures without any prior minimisation step.
The idea of combining NMA and coarse-grained (CG)

representations was further refined, validated, and exten-
ded by several research groups (Bahar et al., 2010b; Bahar
and Rader, 2005; Hinsen et al., 2000; Yang et al., 2009b).
One of the simplest and best performing CG models
reduces each amino acid to a single pseudo-atom (or bead)
located at the Ca position. These coarse-grained repre-
sentations are critical for the study of large biological
molecules because they effectively reduce the size of the
3N� 3NHessianmatrix (whereN is the number of pseudo-
atoms), leading to a dramatic improvement in computa-
tional efficiency. Excellent agreement with experimental

data has been obtained with this Ca model (Atilgan et al.,
2001; Tama and Sanejouand, 2001) or with even coarser
models (Bahar et al., 2010b).

Inspired by the ENM, but based on the thermodynamic
theory of random networks of polymers, Bahar developed
the Gaussian network model (GNM) where the atoms
experience isotropic fluctuations according to a Gaussian
distribution (Bahar et al., 1997). In this case, the potential
energy is defined as:

UðrÞ5
XN
n5m

1

2
fnmðDrnm2Dr0nmÞ� ðDrnm2Dr0nmÞ if

jr0n2r0mj � R ð17Þ

where Drnm is the difference vector between the position of
atoms n and m (Drnm=rn2rm). Consequently, the GNM

1

37

43

48 51

Collective motions

Local motions

Figure 3 Normal mode analysis applied to a biological macromolecule. Representative atomic displacements corresponding to collective and local motions

are shown for the adenylate kinase protein (chain A from PDB ID 4ake), the enzyme that catalyses the reaction: 2ADP2ATP+AMP. Numbers are the mode

indices sorted from low to high frequencies. Whereas the arrows represent the direction and relative amplitude of the motions, the different colours indicate

the regions that are moving together. In the lowest frequency normal modes (collective motions), large groups of atoms experience a concerted motion,

whereas in higher-frequency modes (local modes), only some small groups are moving together (local motions). It is worth noting that the arrow lengths

have been normalised for visualisation purposes, otherwise local motions should be smaller. These images were generated with the iMODS server (López-

Blanco et al., 2014) (http://imods.chaconlab.org).
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potential penalises not only the changes in the interatomic
distance (rnm), such as in Tirion’s model, but also any
change in the direction of the interatomic vector (Drnm). In
contrast with NMA modes that also retain the directional
information, the GNM modes only contain information
about the magnitude of the fluctuations. However, the
isotropic assumption of GNM effectively reduces the
Hessianmatrix size toN�N, thus improving the efficiency
of studies where the directional information is not
required. As in the ENM case, GNM has been used to
successfully predict the global dynamics of a variety of
macromolecular complexes.

Normal Mode Computations

The solution of the standard eigenvalue problem (eqn
(12)), that is, the diagonalisationof theHessian, constitutes
the main computational bottleneck in NMA methods.
Furthermore, it has been prohibitive for large systems
given that the computational cost scales as N3. This has
limited studies to proteins of approximately 300 amino
acids until the early 1990s. Improvements in the NMA
formulations to effectively reduce the number of vari-
ables, such as using the dihedral angles as internal
coordinates (Levitt et al., 1985; Noguti and Go, 1983),
the rotation translation of blocks (RTB) (Tama et al.,
2000), or the explicit consideration of symmetry based on
group theory (Van Vlijmen and Karplus, 2005) enable the
NMA of very large biological molecules in a very short
amount of time. In addition, new more efficient computa-
tional diagonalisation techniques also contribute to
extending the applicability of NMA (López-Blanco et al.,
2013).

Normal Modes are Properties of the
Shape of Biomolecules

There exist many studies evidencing that the collective
motions encoded in the low-frequency modes from differ-
ent CG-ENMs effectively characterise biologically rele-
vant conformational changes. The high accordance
between these results strongly suggests that low-frequency
normal modes are predominantly a property of the shape
of the molecular system (Tama and Brooks, 2006). The
idea that the characteristics of these low-frequency normal
modes are mainly caused by the properties of the shape of
the biological molecule is very intriguing. If this argument
is true, it would mean that an atomic representation of
the biologicalmolecule is not needed to obtain its collective
dynamical properties, rather only its shape would be
necessary. For example, it has been demonstrated that
the lowest frequency normal modes obtained from a
low-resolution density map, where atoms cannot be
distinguished, agree very well with those computed
from the corresponding structure at atomic resolution

(Chacón et al., 2003). Furthermore, the low-frequency
modes are particularly robust to changes in the potential
energy function (Lu andMa, 2005), the CGmodel (Lopéz-
Blanco et al., 2011), and sequence variations (Zheng et al.,
2006). Moreover, flexibility profiles of homologous
proteins are conserved at family and superfamily levels,
even for pairs of proteins with nonsignificant se-
quence similarity (Maguid et al., 2006). All these findings
suggest that macromolecular machines have evolved to
adopt a specific shape that favours of the biological
function.

Applications of Normal Mode Analysis
to Structural Biology

Interesting insights into the mechanical properties of the
molecules at extended time scales can be obtained very
quickly using NMA in contrast to the more demanding
MD simulations.Many studies are indicative of the impact
of NMA in structural biology, especially for large biolo-
gical systems. In the next sections, we comment on exam-
ples of illustrative applications of NMA for the
characterisation of macromolecular flexibility, the predic-
tion of collective conformational changes, and the inter-
pretation of structural experimental data. In Table 1,
several freely available NMA tools for solving these
important problems have been summarised.

Normal modes as predictive tools

The exploration of the normal modes from a single atomic
structure can yield insights, at an atomic level, into the
fluctuations of macromolecular complexes and the
mechanisms of the large-scale rearrangements that occur
upon binding to ligands or to other macromolecules
(Bahar et al., 2010a; Bahar et al., 2010b). The mobile or
static regions can be directly estimated using the relative
amplitudes of the thermal fluctuations predicted by NMA
theory (Cui and Bahar, 2010). Furthermore, rigid, flexible,
and hinge regions can be inferred, taking into account the
directionality (Kovacs et al., 2004) or the covariance
(Flores et al., 2008) of the atomic motions. These predic-
tions are highly correlated with the experimental thermal
fluctuations provided by MD simulations (Rueda et al.,
2007) and by crystallography orNMR(Yang et al., 2009a).
The motions between two distinct experimental struc-

tures observed in the Protein Data Bank lie mostly in the
direction of the two lowest frequency modes (Krebs et al.,
2002). Thus, conformational transition trajectories, that is,
the feasible pathways connecting two distinct atomic
structures, can be generated using a linear combination of
some of the lowest frequency normal modes (see Figure 4).
Although the trajectory structures are only representatives
of possible intermediates, they provide tentative models
that are useful for a better understanding of the functional
transitions and can be used as initial models for further
modelling approaches.
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Table 1 Several NMA-based free programs and servers

Software URLs Comments

Bahar’s http://www.csb.pitt.edu/Faculty/bahar/index.php ProDy: free library for NMA (ANM, GNM) and

PCA of proteins

NMWiz: NMA and PCA plugin for VMD

oGNM: GNMserver for proteins and nucleic acids

ANM: interactive ANM sever for proteins

coMD: hybrid MD and NMAmethod to generate

transition paths

Chacon’s http://chaconlab.org DFprot: interactive NMA server for proteins

iMODS: interactive NMA and transition path

generation server in dihedral coordinates for

proteins and nucleic acids

iMOD: NMA and transition path generation in

dihedral coordinates for proteins and nucleic acids

iMODFIT: flexible fitting of protein and nucleic

acid structures into EM maps in dihedral

coordinates

ElNémo http://www.igs.cnrs-mrs.fr/elnemo Noninteractive NMA server for proteins and

nucleic acids

FlexServ http://mmb.irbbarcelona.org/FlexServ Interactive NMA server for proteins

Gerstein’s http://molmovdb.org MolMovDB: database of macromolecular

movements and noninteractive NMA server for

proteins

StoneHinge: hinge prediction of proteins

HingeProt http://www.prc.boun.edu.tr/appserv/prc/

hingeprot

Interactive NMA server for hinge prediction of

proteins

Hinsen’s http://dirac.cnrs-orleans.fr/plone/software MMTK: free library for molecular modelling,

including NMA

Domain Finder: interactive NMA-based program

to characterise the dynamical properties of protein

domains

DensityFit: flexible fitting of atomic structures into

EM maps

KOSMOS http://bioengineering.skku.ac.kr/kosmos Interactive NMA and transition path generation

server for proteins and nucleic acids

NMSim http://cpclab.uni-duesseldorf.de/nmsim Interactive server to generate transition paths

using NMA-based geometric simulations

NOMAD-Ref http://lorentz.immstr.pasteur.fr/nma/

submission.php

Noninteractive NMA server for proteins and

nucleic acids

PARS http://bioinf.uab.cat/pars Prediction of protein allosteric and regulatory sites

ProMode http://promode.pdbj.org/promode_elastic/

index.do

Pre-computed interactive animations of normal

modes in dihedral coordinates and other NMA-

based results

SPACER http://allostery.bii.a-star.edu.sg Analyse allosteric communication between

different sites

TMM@ http://services.cbu.uib.no/tools/tmma NMA server for the analysis of trans-membrane a-
helices

WebNM@ http://apps.cbu.uib.no/webnma/home Interactive NMA server for proteins

Zheng’s http://enm.lobos.nih.gov Several servers based onNMAor elastic networks:

AD-ENM: interactive NMA server for proteins

and nucleic acids

DC-ENM: builds atomic models satisfying

distance constraints

PATH-ENM and iENM: generate transition paths

EMFF: flexible fitting server of atomic structures

into EM maps
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NMA also represents a promising alternative for mod-
elling flexibility in macromolecular docking (Zacharias,
2010). Macromolecular docking is a computational tech-
nique for predicting how two or more interacting biomo-
lecules can form a stable complex from the unbound
structures. In any of the docking variants, that is, protein–
protein, protein–ligand, or protein–nucleic acid, the
accurate modelling of the complex is a difficult problem,
where the major challenge is in dealing with molecular
flexibility. Fortunately, only a few low-frequency normal
modes are required to describe about one third of the
conformational changes experienced upon association
(Stein et al., 2011). These modes have been successfully
applied either to generate conformational ensembles or to
directly include flexibility in docking simulations (Meireles
et al., 2011).

In allosteric regulation, the union of an effectormolecule
to an enzyme usually leads to conformational changes in
the active site that modulate its activity. The combination
of the collective fluctuations predicted by the GNM with

graph and information theories permits the identification
of such active sites (e.g. catalytic ormetal-binding residues)
(Eyal et al., 2011). These NMA predicted key sites seem to
be highly prone to efficient communication with the rest of
the structure as evidenced by the small number of steps
needed to transmit information to any other residue.

Normal modes are key to interpreting
experimental data

Newcomputational techniques forNMAhave also opened
ways to complement structural data from different
experimental sources, fromwhichatomicmodels cannot be
directly constructed or refined. Mainly, normal mode
vectors can be used as search directions to mimic protein
dynamics and achieve a better fit to the experimental data.
Early applications of NMA used the normal modes to
refine the crystallographic B-factors obtained from X-ray
crystallography. NMA was also employed to improve
the molecular replacement technique used in X-ray

Figure 4 Conformational open-to-closed transition pathway of the GroEL protein based on NMA. Starting from the open monomer (chain A from PDB ID

1sx4) (coloured structure at top left corner), a combination of low-frequency modes were used iteratively to generate the intermediate structures (middle

and bottom rows). Only those modes that reduced the differences with the closed conformation (chain H from PDB ID 1sx4) (grey) were employed. This

transition was generated with the morphing tool of iMODS server (http://imods.chaconlab.org).
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crystallography. In this technique, structures of unknown
macromolecules are modelled using data from known
structural templates. Given the conformation found in the
crystal does not exactly match the conformation of the
templates, several candidate structures can be first gener-
ated from NMA and then evaluated against crystal-
lographic data to obtain possible solutions for molecular
replacement. More recently, new structural refinement
methodologies have also benefited from the use ofNMA in
conjunction with lower resolution structural information
such as cryo-electron microscopy (Lopéz-Blanco and
Chacón, 2013; Tama et al., 2004), small angle X-ray scat-
tering (Miyashita et al., 2011), fibre diffraction data, and
distance constraints. The approach is similar to the com-
putation of conformational transition trajectories descri-
bed previously, but rather than targeting another atomic
structure, the target is defined by the low-resolution
structural data. For example, NMA enables the inter-
pretation of new functional states captured only by elec-
tron microscopy (EM) from available X-ray structures. In
Figure 5, the closed atomic structure of the thermosome is
flexibly fitted into a cryo-EMmap in anopen conformation
using only the lowest frequency modes. This and other
similar NMA-based approaches open up new ways for the

atomic-level interpretation of large conformational chan-
ges and their functional implications.
NMA also provides a reasonable description of the

macromolecularmechanical responses that contribute to the
interpretation of single-molecule experiments and elucidates
the relationship betweenmechanical stability and biological
function. For example, it has been shown that the effective
stiffness calculated from NMA correlates well with the
force required to unfold the protein using single-molecule
manipulation techniques (Eyal et al., 2011). Finally, normal
modes can be used to predict conformational changes by
matching experimental distance constraints from fluores-
cence or NMR (Zheng and Brooks, 2006).

Limitations of Normal Mode Analysis

Despite of the usefulness of NMA for modelling macro-
molecular flexibility, the underlying harmonic approx-
imation leads to important limitations (Ma, 2005). NMA
fails to effectively predict the absolute time scale and
amplitude of the motions, mainly as a consequence of the
anharmonicities imposed by the solvent and the multiple
energy barriers and minima of the energy landscape. The

Flexible fitting

Figure 5 Flexible fitting of an atomic structure into a low-resolution density map based on NMA. The high-resolution structure of the thermosome (PDB ID

1a6d) (rainbow colours) has been flexibly fitted into a low-resolution cryo-Electron Microscopy density map (EMDB 1396) (grey transparency) with

iMODFIT (Lopéz-Blanco and Chacón, 2013) by using the low-frequency modes to maximise the overlap between the map and the structure.
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refolding events and other local rearrangements are poorly
predicted by NMA because they require large displace-
ments that are too far from equilibrium. On the contrary,
large collective motions, such as hinge or shear movements
of domains, correspond to minor rearrangements in the
atomic neighbourhood that can be well captured by the
harmonic approximation. In any case, significant distor-
tions in the covalent structure and steric clashes may
appearwhen the normalmodes are animatedwith too large
amplitudes. This is mainly a consequence of the straight
line trajectories described by the Cartesian coordinates
modes. To minimise such distortions, the covalent struc-
ture can be either explicitly regularised by adjusting the
covalent geometry or implicitly preserved by using the
dihedral angles as internal coordinates in the NMA for-
mulation (Lopéz-Blanco et al., 2011).

Conclusion

NMA is a very powerful method that has shown its profi-
ciency in analysing and studying the dynamics of large
biologicalmolecules. AlthoughNMAhas some limitations
for studying specific biological problems, due to its sim-
plistic harmonic approximation, it represents a popular
and very efficient alternative to other costly techniques for
modelling collective and large-amplitude motions. We
encourage the reader to take a look at the free resources
provided in Table 1 to experience the usefulness of NMA in
structural biology.
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López-Blanco JR, Reyes R, Aliaga JI et al. (2013) Exploring large

macromolecular functional motions on clusters of multicore

processors. Journal of Computational Physics 246: 275–288.

LuMandMa J (2005) The role of shape in determiningmolecular

motions. Biophysical Journal 89: 2395–2401.

Ma J (2005) Usefulness and limitations of normal mode analysis

inmodeling dynamics of biomolecular complexes.Structure 13:

373–380.

Maguid S, Fernández-Alberti S, Parisi G and Echave J (2006)

Evolutionary conservation of protein backbone flexibility.

Journal of Molecular Evolution 63: 448–457.

Meireles L, GurM, Bakan A and Bahar I (2011) Pre-existing soft

modes of motion uniquely defined by native contact topology

facilitate ligand binding to proteins. Protein Science 20: 1645–

1658.

MiyashitaO,GorbaCandTamaF(2011)Structuremodeling from

small angle X-ray scattering data with elastic network normal

mode analysis. Journal of Structural Biology 173: 451–460.

eLS & 2014, John Wiley & Sons, Ltd. www.els.net 11

Normal Mode Analysis Techniques in Structural Biology



Noguti T and Go N (1983) Dynamics of native globular proteins

in terms of dihedral angles. Journal of the Physical Society of

Japan 52: 3283–3288.

Orellana L, Rueda M, Ferrer-Costa C et al. (2010) Approaching

elastic network models to molecular dynamics flexibility.

Journal of Chemical Theory and Computation 6: 2910–2923.

Rueda M, Chacón P and Orozco M (2007) Thorough validation

of protein normal mode analysis: a comparative study with

essential dynamics. Structure 15: 565–575.

SetnyP andZachariasM (2013) Elastic networkmodels of nucleic

acids flexibility. Journal of Chemical Theory andComputation 9:

5460–5470.

Stein A, RuedaM, Panjkovich A, OrozcoM andAloy P (2011) A

systematic study of the energetics involved in structural changes

upon association and connectivity in protein interaction net-

works. Structure 19: 881–889.

Tama F and Brooks CL III (2006) Symmetry, form, and shape:

Guiding principles for robustness inmacromolecularmachines.

Annual Review of Biophysics and Biomolecular Structure 35:

115–133.

Tama F, Gadea FX, Marques O and Sanejouand YH (2000)

Building-block approach for determining low-frequency nor-

mal modes of macromolecules. Proteins: Structure, Function

and Genetics 41: 1–7.

Tama F, Miyashita O and Brooks CL III (2004) Normal mode

based flexible fitting of high-resolution structure into low-

resolution experimental data from cryo-EM. Journal of Struc-

tural Biology 147: 315–326.

Tama F and Sanejouand YH (2001) Conformational change of

proteins arising from normal mode calculations. Protein Engi-

neering 14: 1–6.

Tirion MM (1996) Large amplitude elastic motions in proteins

from a single-parameter, atomic analysis. Physical Review

Letters 77: 1905–1908.

Van Vlijmen HWT and Karplus M (2005) Normal mode calcu-

lations of icosahedral viruses with full dihedral flexibility by

use of molecular symmetry. Journal of Molecular Biology 350:

528–542.

Yang L, Song G and Jernigan RL (2009a) Comparisons of

experimental and computed protein anisotropic temperature

factors. Proteins: Structure, Function and Bioinformatics 76:

164–175.

Yang L, SongG and JerniganRL (2009b) Protein elastic network

models and the ranges of cooperativity. Proceedings of the

National Academy of Sciences of the USA 106: 12347–12352.

Zacharias M (2010) Accounting for conformational changes

during protein-protein docking. Current Opinion in Structural

Biology 20: 180–186.

Zheng W and Brooks BR (2006) Modeling protein conforma-

tional changes by iterative fitting of distance constraints using

reoriented normal modes. Biophysical Journal 90: 4327–4336.

Zheng W, Brooks BR and Thirumalai D (2006) Low-frequency

normal modes that describe allosteric transitions in biological

nanomachines are robust to sequence variations.Proceedings of

the National Academy of Sciences of the USA 103: 7664–7669.

Further Reading

Dill KA and Bromberg S (2003) Molecular Driving Forces: Sta-

tistical Thermodynamics in Chemistry and Biology. New York

and London: Garland Science.

eLS & 2014, John Wiley & Sons, Ltd. www.els.net12

Normal Mode Analysis Techniques in Structural Biology


