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ABSTRACT

Modeling loops is a critical and challenging step in
protein modeling and prediction. We have developed
a quick online service (http://rcd.chaconlab.org) for
ab initio loop modeling combining a coarse-grained
conformational search with a full-atom refinement.
Our original Random Coordinate Descent (RCD)
loop closure algorithm has been greatly improved
to enrich the sampling distribution towards near-
native conformations. These improvements include
a new workflow optimization, MPI-parallelization and
fast backbone angle sampling based on neighbor-
dependent Ramachandran probability distributions.
The server starts by efficiently searching the vast
conformational space from only the loop sequence
information and the environment atomic coordinates.
The generated closed loop models are subsequently
ranked using a fast distance-orientation dependent
energy filter. Top ranked loops are refined with the
Rosetta energy function to obtain accurate all-atom
predictions that can be interactively inspected in an
user-friendly web interface. Using standard bench-
marks, the average root mean squared deviation
(RMSD) is 0.8 and 1.4 Å for 8 and 12 residues loops,
respectively, in the challenging modeling scenario
in where the side chains of the loop environment are
fully remodeled. These results are not only very com-
petitive compared to those obtained with public state
of the art methods, but also they are obtained ∼10-
fold faster.

INTRODUCTION

Protein loop prediction is an essential task in protein struc-
ture modeling, structural refinement, antibody design and
ion channels modeling. Accurate prediction of loops is crit-
ical because they often play key roles in molecular recogni-
tion, ligand binding, protein–protein/protein–DNA inter-
actions and enzyme catalysis. Thus, a significant research ef-
fort has been dedicated to the development of bioinformat-

ics tools to deal with this challenging problem. Algorithms
for loop prediction have been comprehensively reviewed
elsewhere (1–3). Briefly, loop structure modeling methods
can be classified into template-based (database search) or
ab initio (template-free) approaches and their combinations.
Ab initio methods build feasible loop conformations from
scratch whereas template-based methods locate a best fit
from a structural library of loops extracted from the Protein
Data Bank (PDB). Since the number of possible conforma-
tions grows exponentially with loop length, the template-
based methods are limited to relatively short loops. In con-
trast, the ab initio methods overcome this problem by per-
forming an energy-based sampling of the conformational
space. Substantial progress has been recently made using ab
initio or hybrid strategies. State-of-the-art methods such as
KIC (4), NGK (5), HLP (6), LEAP (7), GalaxyLoop-PS2
(8) and ICMF (9) report sub-angstrom accuracy in many
test cases even modeling the neighborhood of the loops.
However, these approaches are computational demanding.
The reported computational times for a single prediction
case of 12 residue range from hundreds of hours for KIC,
HLP, NGK or GalaxyLoop-PS2 to the tenths of hours for
LEAP or ICMF. Logically, the computational cost also de-
pends on the loop length. More importantly, accuracy also
decreases rapidly with the length of the loop. While small
and medium size loops (12 residues or less) are treatable,
longer loops are significantly more challenging. In fact, the
modeling of longer loops is a more complex mini folding
problem.

Here, we center our loop modeling efforts in treatable
loop lengths up to 12 residues long to cover the major-
ity of practical situations. The loop length distribution of
high-resolution protein chains generated by the PISCES
server (10) shown in Figure 1 indicates that 94% of loops
have lengths smaller or equal than 12 residues. The server
is based on our Random Coordinate Descent (RCD) loop
closure algorithm (11) that has been demonstrated to offer
an excellent balance between efficiency and sampling power.
We improve the algorithm to generate more accurate native-
like loops, providing an efficient way to generate a large en-
semble of closed-loops for capturing the diversity of con-
formational space. This ensemble of decoys is scored with

*To whom correspondence should be addressed. Tel: +34 91 561 9400; Fax: +34 91 564 3231; Email: pablo@chaconlab.org

C© The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com

 Nucleic Acids Research Advance Access published May 5, 2016
 at C

entro de Inform
aciÃ

³n y D
ocum

entaciÃ
³n C

ientÃ
fica on M

ay 6, 2016
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://rcd.chaconlab.org
http://nar.oxfordjournals.org/


2 Nucleic Acids Research, 2016

0

10 000

20 000

30 000

40 000

50 000

60 000

70 000

80 000

2 3 4 5 6 7 8 9 10 11 12 >12

# 
O

F 
LO

O
PS

 

LOOP LENGTHS 

Figure 1. Distribution of loop lengths in the protein chain list generated by the PISCES server on April 13, 2016 containing 18 275 chains with 2.0A
resolution, 90% sequence identity and 0.25 R-factor cutoff.

a new knowledge-based, coarse-grained contact potential
(12) that correlates distance and orientation with pair-wise
residue interaction energies. Refinement of the best repre-
sentative loops employing Rosetta completes the modeling
process. In a matter of few minutes from submission of the
anchor residue coordinates, the top-ranked loop predictions
can be interactively inspected using a user-friendly interface.
In examining RCD+’s predictive ability we found compa-
rable, if not better, results than other ab initio methods, in
particular, better than the GalaxyLoop-PS2 method imple-
mented in GalaxyLoop server, to our knowledge, the most
advanced loop modeling service currently available.

MATERIALS AND METHODS
The server is based on our original RCD loop closure
algorithm (11). This ab initio algorithm solved the loop
closure problem by analytically optimizing randomly se-
lected bonds with a fast updating of loop backbone con-
formations based on spinor-matrices (13). The loop clo-
sure sampling was steered by a simplified Ramachandran
filter that constrains the backbone � and � dihedral an-
gles, and by a simple geometric filter that prevented clashes
between the loop backbone atoms and the local protein
surroundings. Although this versatile tool efficiently gen-
erated large ensembles of closed loops, it has been con-
siderably improved in both accuracy and speed to support
a modeling web service. Here, we replace the original ba-
sic Ramachandran filter by neighbor-dependent probabil-
ity distributions extracted using Bayesian non-parametric
statistical analysis from a high-resolution data set of pro-
tein loops (14). Torsion restricted sampling was already
shown to be useful in loop structure prediction for inten-
sifying the sampling toward near-native models (5,14). To
promote sampling diversification, bond lengths and an-
gles are initially randomized from ideal values, as well as,
omega torsions are normally distributed around 179.1◦ ±
6◦. Additional improvements include geometric filters to
discard clashed loops, a best workflow optimization and

MPI-parallelization (detailed results of the sampling en-
richment are available in the website). Once an ensemble
of closed loops (typically 5000–10 000 loops for 8 and 12
residues, respectively) is efficiently generated using RCD+,
it is scored using ICOSA energy function, a new pairwise
coarse-grained contact potential (12) that correlates inter-
residue distance and orientation using a simple icosahe-
dral tessellation. This knowledge-based potential has ac-
curacy and sensitivity comparable to all-atom fine-grained
potentials in identifying CASP10 models and discriminat-
ing near-natives from misfolds. Moreover, ICOSA perfectly
matches with RCD+ since it only needs information of the
backbone atoms and it is also very efficient. The best 10%
of the ensemble loops ranked by ICOSA potential are re-
fined with PyRosetta modeling package (15) to produce
accurate all-atom predictions. After side-chains are added
using the standard repacking protocol, we employ five re-
finement cycles of side-chain repacking and gradient mini-
mization with dfpmin armijo nonmonotone method and ta-
laris2014 energy function. On each cycle we ramp the re-
pulsive weight up and down while minimizing the loop and
ultimately selecting the lowest energy loop. An equivalent
minimization strategy has been already employed in Mac-
Donald et al. (16). The refinement stage can be performed
either in native (crystallographic) or modeling scenarios. In
the former, only the backbone and side-chain of the loop
are refined whereas in the latter the side-chains of the en-
vironment are also optimized. The environment is defined
as the set of residues with any atom within 5 Å from any
loop C� atom. It is worth to mention, in contrary to other
methods, we first remove all native information of the loop
as well as all surrounding sidechains within 10 Å from any
of 100 pre-sampled loops. PyRosetta refinement scripts are
also freely available upon request. Typical refinement times
are around one minute per conformation for a 12-residues
loop.
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Table 1. Loop-prediction performance of RCD+ and other state-of-the-art methods

Nativea Modeling

HLPb Galaxy RCD+ HLP Galaxy Rosetta RCD+

Lengthc Std. PS2 1d 5 20 SS PS2 NGK 1 5 20

Median 0.6 0.6 0.5 0.3 0.3 0.9 1.1 0.4 0.5 0.4 0.4
8 Average 1.2 0.9 0.6 0.5 0.4 1.3 1.3 0.5 0.8 0.7 0.6

Sigma 1.5 0.7 0.3 0.3 0.2 1.5 1.0 0.3 1.0 1.0 0.8
#e 13 14 17 18 19 11 9 17 15 18 18

Median 0.6 1.4 0.6 0.4 0.4 0.9 1.6 0.8 0.6 0.6 0.5
12 Average 1.2 1.6 1.0 0.9 0.7 1.4 2.1 1.7 1.4 0.8 0.8

Sigma 1.2 1.3 1.7 1.0 1.0 1.4 1.7 1.8 1.6 0.9 0.9
#e 12 7 16 16 17 11 4 11 13 17 17

aSampling scenarios: (i) Native, the side-chains of the loop environment are kept, or (ii) Modeling, include the refinement of the loop environment side-
chains.
bHLP, HLP-SS, Galaxy-PS2 and Rosetta-NGK Root Mean Squared Deviations (RMSDs) were taken from Supplementary Tables S1, S2, S4 and S5 of
(8) and calculated considering the main-chain atoms N, C�, C and O.
cNumber of residues of the loop.
dRMSD of the lowest Rosetta-energy loop predicted with RCD+ together with the best RMSD of the 5 and 20 loops of lowest Rosetta-energies.
eNumber of sub-angstrom cases.

DESCRIPTION OF THE WEB SERVER

The web interface of the RCD+ server is very intuitive and
responsive to all major browsers. The input is quite simple;
the user must introduce the atomic coordinates of the pro-
tein, chain id, the sequence and start/end indices of the loop
residues to be modeled. The atomic coordinates can be ei-
ther uploaded (PDB format v3.x) or fetched directly from
the PDB using the corresponding entry ID. By contrast to
other algorithms, the server fully models from scratch all
residues from Start to End indices (inclusive). The only re-
quirement is the presence of the N- and C-terminal anchor
residues (indices Start-1 and End+1). For example, if the
user wants to model an 8-residue loop from index 270 to
277 the provided structure must include at least the N, C�

and C backbone atoms of the N-terminal (index 269) and
the C-terminal (index 278) residues. Then, one of the fol-
lowing two prediction scenarios must be selected: (i) native,
when the conformations of the side-chains of the loop en-
vironment are reliable, e.g. for predicting the missing loops
in atomic structures, or (ii) modeling, when the side-chains
of the loop environment could be in a different conforma-
tion and should be remodeled, e.g. if the submitted structure
is an homology model. In either case, if the loop region is
close to some other protein chain it should be included in
the input PDB file to sterically constrain the search space.
Finally, the modeled loop sequence must be typed or pasted
in one letter format. Although the cis/trans isomerization
is not considered in the modeling, the user can select the
modeled proline isomer in the sequence by using the lower
and upper case of the letter p to choose cis or trans pro-
line, respectively. Upon submission, the prediction job will
be queued in our cluster and the user will be immediately
redirected to the Queue status tab to check the job status in
real time. Once the jobs are completed, direct links to the re-
sults are generated in the list of finished jobs and optionally
sent to the user by email. The results page (see a representa-
tive layout in Figure 2) includes a JSmol (17) visualization
section in which the 20 lowest-energy models can be inter-

actively inspected and compared in 3D through HTML5,
WebGL or Java interfaces. The user can easily customize
color and representation method to facilitate comparisons.
Below this section, all computed files can be downloaded,
including the all-atom models of the 20 best energy loops
and the initial raw ensemble of energy-filtered loops. The
Ramachandran plots of both the refined and the raw RCD+
energy-filtered loops can be also visualized and compared.
Finally, and just for validation purposes, if the submitted
coordinates already contain the native loop, the modeling
will completely ignore them but the results section will in-
clude the comparison of the predictions with the native loop
through backbone RMSD versus energy plots to facilitate
the performance evaluation of RCD+ with the ICOSA and
talaris2014 energy functions. Full documentation is pro-
vided, including detailed benchmark results, a gallery of
pre-computed examples and help information.

PREDICTIVE PERFORMANCE

The predictive performance of our server has been tested
in Table 1 using standard benchmarks of 8- and 12-residue
loops (20 cases each) employed in the validation of other
public state-of-the-art methods. In a native scenario, the av-
erage (or median) backbone RMSDs between the lowest-
energy model and the native conformation (computed us-
ing N, C�, C and O loop backbone atoms) are 0.6/1.0
(0.5/0.6) Å for 8/12 residues loops, respectively. These re-
sults are better than those obtained by other methods such
as HLP and Galaxy-PS2 that attained 1.2/1.2 (0.6/0.6) Å
and 0.9/1.6 (0.6/1.4) Å, respectively. Sub-angstrom predic-
tions are found in the top-ranked (lowest-energy) loop for
17/16 (8/12 residues) of the cases with RCD+ whereas HLP
and Galaxy-PS2 only reached 13/12 and 14/7, respectively.
In the modeling scenario we employed a set of crystal struc-
tures with perturbed side-chain structures taken from Sell-
ers et al. (6) to assess the performance in inaccurate environ-
ments. In this scenario, where side-chains of the loop and
the environment are fully re-modeled from scratch, the ac-
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Figure 2. Sample results page provided by the server for a bacterial hydrolase loop (PDB-ID 1qwl). In this case, for validation proposes only, the native
loop (yellow) is displayed superimposed with the predicted lowest energy model in the JSmol visualization panel. On the right, the 20 top-ranked loop
models are sorted by energy and can be easily selected to activate visualization and customize representation. The RMSD versus ICOSA energy plots and
the Ramachandran distributions are shown in the bottom part.
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C  (1oth)  A  (1arb)  B  (1my7)  

E  (2pia)  F  (1a8d)  D  (1qlw)  

Figure 3. Illustrative cases of the server performance with benchmark test cases. In all the cases, the first ranked model (lowest energy) is depicted in
blue, the native loop in yellow and the protein environment in gray. Alternative solutions found in the 12nd best (1oth) and 2nd best (1a8d) top-ranked
predictions are colored in cyan.

curacy of RCD+ is well maintained up to 0.8/1.4 (0.4/0.6)
Å. The accuracy of our method with 8 residues loops is
slightly lower than NGK that reaches 0.5 but with similar
median (0.5–0.4). For 12 residues loops we have compara-
ble results to HLP and NGK but with better median values
(0.6 versus 0.8–0.9 Å), clearly outperforming Galaxy-PS2.
In this scenario, RCD+ obtained 13 sub-angstrom predic-
tions followed by NGK and HLP with 11. On average, the
predictions of our server are better than Galaxy-PS2 server
and as good as the best approaches. However, RCD+ server
is able perform the predictions in 5–15 min whereas NGK
and HLP require at least one order of magnitude more time.

EXAMPLES OF USE

Several 12-residue test cases have been selected from those
20-case benchmark sets employed in the validation to di-
rectly illustrate usage and performance of our server (addi-
tional examples are available on the Gallery tab of the web-
site). When a native scenario is considered, RCD+ is able
to obtain sub-angstrom predictions in 16 of the 20 cases
(Supplementary Table S2) in the first solution. For example,

in Figure 3, the lowest energy models predicted by RCD+
(blue) of two representative cases (1arb and 1my7) are illus-
trated (panels A and B) together with the corresponding na-
tive conformation of the loop (yellow) and its environment
(gray). Moreover, in one (1oth) of the 4 cases with RMSD
significantly above 1.0 Å, a sub-angstrom structure can be
found within the first 20 best predictions (panel C). In 1cnv
and 1cs6 cases, other methods also fail to obtain a sub-
angstrom model, indicating that these are difficult cases. In
a modeling scenario, we find 13 sub-angstrom predictions
in the top-ranked loops (see 1qlw and 2pia in panels D and
E), but we improve up to 17 when considering the best 5
predictions. In this more challenging scenario, we are still
able to recover sub-angstrom models from the top-scoring
solutions sampled in two failed cases 1oth and 1oyc. Also,
in the 1a8d case the best solution (5.2 Å) is dramatically
improved up to 1.1 Å just by the second top-ranked model
(panel F). In the 1m3s case all methods but ours fail, pre-
sumably because only we considered the loop neighboring
oligomers. It is worth noting that in the remaining 1cs6 and
1cnv failed cases none tested methods obtained good solu-
tions. Interestingly, the RCD performance can be improved
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in some of these cases by running several independent pre-
dictions. Thus, improving the current method to combine
several independent runs will probably lead to accuracy im-
provements in future server versions.

TECHNICAL DETAILS

The web server is implemented as a combination of several
PHP, python and JavaScript modules running in a dedicated
Linux system with two Intel R© Xeon R© E5-2650 processors
running at 2.00 GHz (16 cores) and equipped with 128 GB
RAM. For optimal web server usage, a queue system (grid
engine) is included for job management and scheduling. The
calculations are performed in a modest Linux cluster with
10 nodes of 8 GB of RAM of dual Intel R© Xeon R© E5410
2.33 GHz processors. A typical 12-residues loop prediction
costs around ∼10 CPU-hours in the cluster (equivalent to
∼6 h in a modern E5-2650 processor). Modeling results are
visualized in 3D with JSmol (17).

CONCLUSIONS

Since protein loop modeling is critical for understand-
ing molecular mechanisms in molecular recognition, signal
transduction or enzymatic reaction, it is essential having an
online tool that facilitates such a challenging task. By merg-
ing a very efficient ab initio exhaustive sampling with a full-
atom state-of-the-art refinement, our new web service con-
sistently reaches sub-angstrom accuracy in 80–90% of the
cases within the top 5 predictions for 8–12 residues loops.
The average backbone RMSDs between the lowest-energy
model and the native conformation is 0.6 Å or 0.8 Å de-
pending if the side chains of native environment are consid-
ered or fully remodeled, respectively. The accuracy is still
well maintained up to 1.0 and 1.4 Å for 12 residues loops
benchmark. Our server, RCD+, is the fastest alternative to
generate accurate loop predictions that can be easily ex-
plored and selected for further applications.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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