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Abstract: Elastic network models (ENMs) are coarse-grained descriptions of proteins as
networks of coupled harmonic oscillators. However, despite their widespread application to study
collective movements, there is still no consensus parametrization for the ENMs. When compared
to molecular dynamics (MD) flexibility in solution, the ENMs tend to disperse the important
motions into multiple modes. We present here a new ENM, trained against a database of
atomistic MD trajectories. The role of residue connectivity, the analytical form of the force
constants, and the threshold for interactions were systematically explored. We found that contacts
between the three nearest sequence neighbors are crucial determinants of the fundamental
motions. We developed a new general potential function including both the sequential and spatial
relationships between interacting residue pairs which is robust against size and fold variations.
The proposed model provides a systematic improvement compared to standard ENMs: Not
only do its results match the MD resultsseven for long time scalessbut also the model is able
to capture large X-ray conformational transitions as well as NMR ensemble diversity.

1. Introduction

Protein functions largely depend on the intrinsic flexibility
of their structures; even processes such as ligand binding or
catalysis, in which the overall shape or surface properties
play a dominant role, are coupled to local movements of
the polypeptide backbone.1 The intrinsic deformability of
different protein families seems to guide structural changes
along evolution, and deformation patterns (i.e., the large-
scale motions) are extremely conserved in proteins displaying
a common function.2 Unfortunately, despite promising ad-

vances,3 the experimental study of large-scale dynamics is
still difficult, and a large amount of information comes from
theoretical calculations. Among the computational ap-
proaches to tackle the question of protein flexibility, molec-
ular dynamics (MD)4-6 is probably the most accurate, since
it is based on a rigorous physical formalism and a thorough
parametrization from quantum-mechanical and experimental
measurements. Although the high computational cost still
limits atomistic simulations to the nanosecond to microsec-
ond time scale, the principal component analysis (PCA) of
MD trajectoriessalso called the essential dynamics (ED)7

approachsprovides valuable information on large-scale
functional motions, as we will discuss below. An alternative
to MD to reach biologically relevant time and length scales
is coarse-grained (CG) models,8 which simplify both the
protein representation and the potential functions. Among
these methods, the elastic network models (ENMs) are
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probably the most widely used ones.9 The ENM potential is
defined by a network of springs connecting the CR atoms in
a topology matrix Γ (known as the Kirchhoff matrix) of inter-
residue contacts, where the ijth element is equal to -1 if
nodes (i.e., residues) i and j are within the cutoff distance rc

or 0 otherwise and the diagonal elements (iith) are equal to
residue connectivity:

The topology of the CR network may be alternatively
expressed in terms of a stiffness matrix, whose elements are
the Hookean force constants, Kij, acting between any pair of
nodes i, j:

where � is a constant which may or may not have the same
value for all pairs, depending on the model. Hence, the
overall potential energy of the network is given by

where Rij and Rij
0 are the instantaneous and reference

(equilibrium) distances between each pair of R-carbons i and
j. The functional in eq 3 can be implemented into Monte
Carlo or dynamics algorithms10 to obtain ensembles of
accessible configurations or within the elastic network normal
mode analysis approach (NMA)11,12 to build the Hessian
matrix of the potential. Within the anisotropic network model
(ANM)13 approach, diagonalization of the Hessian directly
yields a set of eigenvectors and eigenvalues (in energy or
frequency units) which together define the near-equilibrium
harmonic deformability space. In spite of this extreme
simplicity, the lowest frequency modes of the ENMs provide
descriptions of large-scale flexibility in good agreement with
empirical and theoretical data, being especially well-suited
to trace cooperative domain and segment movements.
However, it cannot be ignored that ENMs are based on a
harmonic, near-equilibrium approach and a rigid topology
and thus have problems in capturing large anharmonic
motions that can (in principle) be traced by MD simulations.
Furthermore, there is no consensus parametrization, and the
diverse models are often fitted to each particular problem.

Many attempts have been made to improve the robustness
and generality of ENMs, for example, developing methods
where atoms are grouped into rigid blocks,14 scaling differ-
ently covalent and noncovalent contacts,15 or using Mark-
ovian approaches16 to define the coarse-graining. The use
of an isotropic constant and a cutoff is appealing for its
simplicity, but can lead to different outcomes depending on
the selected threshold for interactions17 (see also the Results
and Discussion). Therefore, to avoid the use of an arbitrary
cutoff, the discrete Hamiltonian is sometimes replaced by
continuous functions that scale the force constants with an
inverse power of the inter-residue distance. For example,
Hinsen et al.18 derived a function for the spring strength by
fitting to a local minimum from a single 1.5 ns MD
simulation of one protein. This force constant definition

proposed stronger couplings for backbone neighbors and a
sixth power of distance for the rest of the interactions. The
distinction of short- and long-range terms was, however,
dependent on a short 4 Å cutoff, and the formulation also
included a protein-fitted scaling factor for the global energet-
ics. Kovacs et al.19 proposed a simpler sixth-power expo-
nential which did not require any cutoff or scaling factor.
Other authors have also used several distance-dependent
force constants,20 including sometimes specific short-range
terms (see ref 21, also based on MD) or, alternatively, bond
cutoffs for chain neighbors.22 Recently, Jernigan et al.23

suggested an inverse-square function for the reproduction
of B factors, but they found that the resulting stronger long-
range cohesion prevented discrete domains from moving
properly.

Attempts to refine and improve ENMs have a common
drawback: the lack of reliable experimental data on protein
flexibility in solution, mostly coming from nuclear magnetic
resonance (NMR) spectroscopy relaxation measurements24

and to a lesser extent neutron scattering data,25 both available
for very few proteins. Therefore, in most studies so far,
ENMs have been validated by fitting the calculated atomic
fluctuations to B factors found in the crystal, in some cases
to the degree of reaching an almost perfect fit.26 Nevertheless,
the use of X-ray B factors as a reference for flexibility in
solution has been highly controversial,27-29 since they are
subject to crystal packing effects, among other biases such
as internal static disorder or refinement errors.30 Other
indirect sources of flexibility data for calibration and bench-
marking have been the study of the environment-dependent
conformational space of proteins23,31 and, more recently, the
analysis of NMR ensembles,32,33 including comparisons with
their RMSDs.34 However, in the first case no guarantee exists
that conformational changes induced, for example, by the
presence of other molecules match the intrinsic deformation
pattern of apo proteins. Furthermore, principal components
predicted from PCA of selected NMR ensembles agree with
the ED modes,35 but caution must be taken since local
diversity of NMR structures may also be a sign of experi-
mental uncertainty due to missing data. In summary, there
is a dramatic lack of direct experimental information on
protein flexibility in solution, which hinders the validation
of current models. As a consequence, concerns exist in their
real generality and physical sense and in whether a small
improvement compensates for an increase in model com-
plexity and the need for adjusting more ad hoc parameters.

On the basis of the previous paragraph, it seems reasonable
to use MD simulations as reference data for refinement of
ENMs. Surprisingly, only a few authors have explored the
use of MD data for ENM parametrization. MD simulations
render detailed flexibility information on the correlated
motions for the time scale sampled, as shown in comparisons
with NMR fast motions.36 Current MD simulations reproduce
accurately high-quality direct NMR information on protein
flexibility (RDCs and S2 parameters) in the few proteins for
which these measurements are available.37 On the other hand,
MD displays excellent correlation with B factors, even though
MD B factors are systematically larger, especially for very
flexible residues (which appear “frozen” in the crystal

Γij ) {-1 if dij e rc

0 if dij > rc
Γii ) - ∑

k|k*i

N

Γik (1)

Kij ) 0.5�Γij (2)

E ) ∑
i*j

Kij(Rij - Rij
0)2 (3)
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lattice37). MD captures both short- and large-scale flexibili-
ties, the latter being extracted from ED treatment of the
collected trajectory,38 allowing the characterization of col-
lectiveanharmonicdisplacementsoftenrelatedtofunction.39-41

As pointed out above, these so-called essential modes also
correlate extremely well (both in directions and variance
distribution) with the principal components from selected
NMR ensembles35 and thus can be expected to provide a
quite realistic picture of large-scale flexibility in solution.

In a previous related work,42 we performed a thorough
comparison between the collective motions predicted by ED
and different ENMs. We found that the space defined by
the first, most relevant NMA eigenvectors captures the
backbone flexibility as given by ED, with the inverse function
proposed by Kovacs outperforming the original cutoff
approach. However, despite these good correlations with the
ED eigenspace, the main motions in NMA are often spread
out into multiple modes of similar energy, instead of being
concentrated in a few modes as detected in ED. In other
words, ED displays higher flexibility, describing collective
motions in fewer modes than NMA. Note that this discrep-
ancy cannot be corrected by scaling uniformly the spring
constants, since the variance distribution pattern along the
energy spectra is fundamentally different (see the discussion
below). In this paper we tried to find solutions to this problem
by deriving a refined EN-NMA model based on comparison
with atomistic MD simulations for a large number of
proteins. The proposed ED-refined ENM method (in the
following ed-ENM) provides results closest to those of MD,
is able to reproduce flexibility in NMR ensembles, and can
trace efficiently biologically relevant deformations observed
in the Protein Data Bank. The ed-ENM is freely available
through the Web site58 http://mmb.pcb.ub.es/Flexserv. Im-
provement with respect to standard elastic network models
is consistent in all the metrics considered.

2. Methods

2.1. Elastic Network Normal Mode Analysis. ENM can
be considered a generalization of the bead-and-strings Rouse
polymer model, but contrary to this simple scheme where
only chained monomers are coupled, current ENMs connect
all R-carbons within a given threshold. Thus, all interactions
within the cutoff are harmonic and uniform (irrespective of
their chemical nature), and all interactions outside are
negligible. By relying on the Cartesian distance as the sole
criterion, ENMs are not able to distinguish between close
chain neighbors and remote contacts. To derive a more
physically sound model, we explored alternative approaches,
where the CR-CR interaction strength depends on their
topological relationship. After extensive testing of different
potential functionals, we analyzed in detail three models that
represent increasing levels of topological complexity and
constant scaling: (i) a cutoff model with a uniform constant,
the most widespread approach (standard defaults in ref 43);
(ii) a noncutoff model using an exponential decay function,
as developed by Kovacs and co-workers;19 (iii) a hybrid
cutoff model with sequential weighted springs for the first

(M) neighbors, while the rest are represented by an inverse
function of the Cartesian distance.

To obtain the weights of the spring constants for the first
sequential neighbors in an unbiased way, we computed the
residue-residue “apparent” stiffness constants obtained from
MD assuming the harmonic oscillator model:

where kB is the Boltzmann constant, T is the temperature,
and Rij - Rij

0 is the oscillation in the interaction distance from
average values. These constants were fitted to an inverse
exponential function using a nonlinear regression routine for
a small protein set (see the Results and Discussion):

where Sij stands for the distance in sequence between residues
i and j. The optimum exponent determining the shape of the
variation is used in the rest of the study, while the constant
Cseq is further refined to match “real” instead of “apparent”
force constants (see the Results and Discussion). A similar
strategy was used to derive the distance dependence for
nonsequential interactions:

where dij is the distance between residues i and j in a given
conformation; in our implementation dij ) |Rij

0|. In the ed-
ENM, the network topology is defined by a fully connected
matrix for the first M neighbors, and contrary to standard
pure continuum methods, we introduce a size-dependent
cutoff to annihilate artifactual distant interactions (see the
Results and Discussion). Thus, given a pair of residues i and
j with sequential distance Sij > 0 and Cartesian distance dij,
the ijth element of the hybrid inter-residue contact matrix is

where Γij always has 2M + 1 nonzero diagonal entries
defining neighbor chained contacts. Accordingly, the force
constants Kij are dependent not only on the Cartesian but
also on the sequential distance:

where values for all terms (nseq ) 2 and Cseq ) 60 kcal/
(mol ·Å2); ncart ) 6 and Ccart ) 6 kcal/(mol ·Å2); in energy
units) are obtained by fitting to apparent force constants and
structural variance profiles. On the basis of MD simulations,
a limit of M ) 3 was used for sequential interactions, and
the cutoff radius (rc) was found to be dependent on the size
(see the Results and Discussion).

Kij
app )

kBT

〈[Rij - Rij
0]2〉

(4)

Kij
ap(Sij) )
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Sij
nseq
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Kij
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Ccart

dij
ncart

(6)

Γij{Sij e M Γij ) 1

Sij > M {Γij ) 1 if dij e rc

Γij ) 0 otherwise
(7)

Kij{Sij e M Kij ) Cseq/Sij
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Sij > M {if dij e rc then Kij ) (Ccart/dij)
ncart

Kij ) 0 otherwise
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2.2. Molecular and Essential Dynamics. MD simulations
for several proteins (see above) were titrated, neutralized,
hydrated, minimized, heated, and equilibrated for at least 0.5
ns. Trajectories were collected for at least 10 ns using three
all-atom force fields (AMBER,44 CHARMM,45 and OPLS/
AA46). The three trajectories obtained were combined to
create a metatrajectory which is expected to collect much
of the equilibrium dynamics of proteins (control simulations
were also performed considering the individual trajectories).
The noise arising from irrelevant short-range vibrations was
filtered to obtain large-scale motions by ED:7 the MD
trajectory snapshots were aligned to the original X-ray
reference structure (or the average of the NMR ensemble)
to compute a common average structure and used to build a
covariance matrix whose diagonalization (PCA) yields a set
of eigenvectors and eigenvalues representing the essential,
large-scale movements (further details in ref 37). To check
the ability of the ENMs to capture deformations happening
on longer time scales, we extend several calculations to long
(0.1 µs) or very long (0.5-1 µs) time scales, using in this
case only the AMBER force field as discussed below.

2.3. Training Proteins. Initial training of the model was
performed by taking six highly representative proteins (PDB
1I6F, 1PHT, 1AGI, 1JLI, 1BSN, and 1SUR) of different sizes
(60-200 residues) which were present in our µMODEL
subset of the MODEL database (http://mmb.pcb.ub.es/
MoDEL; see ref 37). Parameters were adjusted using as
reference the dynamics metatrajectories described above.

2.4. Test Proteins. The model was first tested against the
rest of the proteins (from 32 to 400 residues) contained in
the µMODEL set, composed of 32 proteins representing the
main metafolds. Larger and multidomain proteins (PDB
3ADK, 1BUD, 1SSX, 1PPO, 1DUA, 1QLJ, and 1PMI) were
added, including some extremely large proteins (1SQC (619
residues), 1E5T (710), and 1J0M (747)) and a multimeric
complex (1E9S (2545)). To test the performance of ed-ENM
on long time scales and avoid any bias introduced by the
length of the simulations, we analyzed extended MD
trajectories (0.1 µs) for 2GB1, 1CEI, 1CQY, and 1OPC, up
to the microsecond (0.5-1 µs) for the last two proteins
(1CQY, 1OPC) plus 1UBQ and 1KTE. Long trajectories as
well as standard trajectories for large proteins were obtained
only with AMBER.

2.5. Comparison Metrics. The ENMs’ ability to repro-
duce MD flexibility was tested considering a wide variety
of metrics to cover different aspects.

2.5.1. RelatiVe Deformational Amplitude. The size and
complexity of the protein deformation space were character-
ized by (i) the structural Variance, (ii) the number of modes
needed to explain 90% of this variance, (iii) the Variance
profile with respect to the number of modes, (iv) the “reduced
Variance” defined as the variance explained by the first five
modes, which for most average-sized proteins accounts for
70-80% of the total variance (see Figure S1 in the
Supporting Information; similar findings in ref 31), and (v)
the strength of the softer deformation modes. Note here that
the ED eigenvalues obtained by diagonalization of the
Cartesian covariance matrix (describing the mode amplitude)
appear in distance units, but can be converted into energy

units (kcal/(mol ·Å2), i.e., mode strength) for comparison with
NMA modes by using

where ν stands for a given mode, kB is Boltzmann’s constant,
T is the temperature, and λ stands for the associated
eigenvalue (in square distance, Å2).

2.5.2. Deformational Space OVerlap. Hess’s metric47-49

was used to estimate the similarity of NMA and ED
deformation spaces:

where the indexes i and j stand for the orders of the
eigenvectors (ν, ranked according to their variance contribu-
tion) and m stands for the number of eigenvectors in the
“important space”, defined as the minimum number needed
to explain a certain variance threshold. We considered here
two definitions of the important space to guarantee a
representative number of eigenvectors in the calculations:
(i) eigenvectors needed to explain the 90% variance (γ90%)
and (ii) the first 50 eigenvectors (γ50). Additionally, the
similarity between the first 10 eigenvectors from the ED and
normal mode subspace was computed (γ10). However, the
similarity index in eq 10 presents two shortcomings: (i) the
similarity increases with the important space size and (ii)
the index is not sensitive to the eigenvector permutation. To
solve the first, we refer to Hess’s indexes to background
models using Zscore:

where 500 physically meaningful random models were
obtained by diagonalization of a covariance matrix derived
from discrete molecular dynamics (DMD) simulations per-
formed using a Hamiltonian containing covalent bonds plus
a hard sphere potential.10 To evaluate the impact of permuta-
tion, we computed dot products between eigenvector pairs,
determining the difference in rank between the ones showing
the largest overlap, and used Perez’s similarity index, which
weighs the similarity of each pair of eigenvectors by their
associated Boltzmann factor (see ref 50):

Kν )
kBT

λ
(9)

γXY ) 1
m ∑

i)1

m

∑
j)1
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(νi
ED · νj

NMA)2 (10)
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(γAB(obsd)) - (γAB(random))

std(γAB(random))
(11)
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2 ∑
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λj
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i)1

i)z

exp{- (∆x)2
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j)1

j)z

exp{- (∆x)2
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B }]2
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i)1

i)z ( exp{-2
(∆x)2

λi
A }

( ∑
i)1

i)z

exp{- (∆x)2

λi
A })2)2

+ ∑
j)1

j)z ( exp{-2
(∆x)2

λj
B }

( ∑
j)1

j)z

exp{- (∆x)2

λj
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(12)
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where the common displacement (∆x) is selected as the
minimum value for which the impact outside the important
space is negligible. An additional metric that helps in
determining the similarity between MD and NMA-based
eigenvectors is the “spread” index by Hinsen:51

where ηij ) νi
A ·νj

B. Note that for two identical sets of modes
ηij

2 * 0 only if the i ) j spread becomes equal to 0. Higher
values indicate the distribution of the eigenvector i on a larger
number of eigenvectors j in the B space.

2.5.3. RelatiVe Distribution of the Deformational Pattern.
The flexibility distribution along the residues can be analyzed
from different metrics. A powerful one is Brüschweiler’s
“collectivity” index,52 which evaluates the amount of residues
involved in every motion k:

where N is the total number of residues in the protein and
uk,i

2 is given by

where mi is the mass of residue i. The large-scale motions
tend to be the more collective ones. The B factors for each
residue i, Bi, were evaluated from average thermal fluctua-
tions, 〈∆ri

2〉, under mode k:

where

They were also processed to determine Lindemann’s in-
dexes,53 a useful metric providing information on the
macroscopic behavior (liquid or solid) of proteins:

where a′ is the most probable nonbonded near-neighbor
distance (taken as 4.5 Å). To avoid noise introduced by high-
frequency modes, B factors and Lindeman’s indexes have
been computed by summing the contributions of the first 50
modes (negligible differences are expected if more modes
are considered).

2.5.4. Dot Product against X-ray Transition Vectors.
Systems selected for analysis belong to a benchmark of
conformational transitions (http://sbg.cib.csic.es/Software/
NMAFIT), formed by 54 transition problems from the
macromolecular motions database MolMovDB,54 with dis-
placements greater than 2 Å CR rmsd (the average displace-
ment was 6.3 Å with a standard deviation of 3.4 Å). We

present results for 10 different motions between open/closed
pairs; note that each open/closed pair presents two different
transition problems. The ability of ed-ENM to predict these
biologically relevant transitions was estimated by the ac-
cumulated normalized dot products between the 5 (γ5) and
10 (γ10) first eigenvectors of the corresponding closed/open
form, which have been shown to describe the conformational
change31,54 with respect to the multidimensional vector
driving the transition (see eq 10; here m ) 1 for the first
subspace; thus, here γ denotes a dot product between a single
vector and a subspace, as opposed to the deformational space
overlap in section 2.5.2). As an additional metric, we
determined the rank distance between the transition vector
and the best overlapped eigenvector (a value of 0 indicates
that it is the first one).

2.5.5. Dot Product against Principal Components from
NMR Ensembles. To have a qualitative approximation to the
flexibility present in NMR multiple structures, we selected
26 ensembles from the Protein Data Bank having at least 10
conformers and spanning a wide size range. Each structure
was coarse-grained to the CR level and then aligned to its
average. The closest structure to this initial one was used as
a template for a second alignment and computation of the
final average structure, which was the reference for subse-
quent ANM and PCA. The performance of the different
ENMs to describe the diversity of the structural ensemble is
measured by the accumulated normalized dot products (as
given in eq 10) between the 5 (γ5) and 10 (γ10) first
eigenvector pairs from each subspace (i.e., a deformational
space overlap as in section 2.5.2) and also by the value of
the dot product for the best overlapped pair (γmax) (a vector
to vector inner product).

3. Results and Discussion

3.1. Optimization of the Method. As described above,
MD trajectories of a small set of proteins were used to
formulate the model, which was later tested against a larger
set. The key elements to explore in the training phase were
(i) the function for the force constant distance dependence,
(ii) the effects of disconnecting/connecting sequential and
spatial relationships, (iii) the optimal threshold for distant
interactions, and (iv) the pre-exponential factors (Cseq and
Ccart; see eq 8 for an explanation) used to scale residue-residue
stiffness. Our purpose was to define a limit for relevant
contacts to infer general connectivity rules. Nevertheless, a
multiparametric fitting of all these elements to MD may lead
to an overtrained method, and thus, we decided to follow a
conservative stepwise strategy to guarantee its generality and
physical sense.

3.1.1. Definition of a Sequential Threshold for Nearest-
Neighbor Interactions. We first analyzed the distance depen-
dence of the apparent inter-residue force constant detected
in MD. The results in Figure 1 (left) show that in the limit
of uncoupled oscillators (see eq 4) the apparent force constant
decays exponentially with the CR-CR distance; similar
findings were obtained by Hinsen et al.18 However, there
are evident deviations at distances corresponding to if i +
1 residue interactions (close to 3.8 Å) and to a lesser extent

si ) ( ∑
j

j2ηij
2 - ( ∑

j

jηij
2)2)1/2 (13)

κk )
1
N

exp{-∑
i)1

N

uk,i
2 log uk,i

2} (14)

uk,i
2 )

νk,X
2 + νk,Y

2 + νk,Z
2
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(15)

Bi ) (8π2/3)〈(∆ri)
2〉

〈(∆ri)
2〉 ) (3kBT/�)[Γ-1]ii ) (3kBT/�) ∑

k

[λk
-1νkνk

T]ii
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∆L )

( ∑
i

〈∆ri
2〉/N)1/2

a′ (17)
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to i f i + 2 and i f i + 3 sequence interactions (around
6-10 Å). The singular nature of these nearest-neighbor
interactions becomes evident in a plot of the apparent force
constant dependence on the sequential distance (Figure 1,
right). Fitting of force constants to this sequence distance
for close chain neighbors reveals an order 2, inverse square
exponential relationship (nseq ) 2 in eq 8) which has been
incorporated into the algorithm for i f i + 1 to i f i + 3
contacts. This formalism defines the relative strength of the
interactions between the first three neighbors as approxi-
mately 102:101:100 (in order of magnitude), a ratio that we
found important to capture mode directionality. The pre-
exponential factor (Cseq) appearing in eq 8 cannot be taken
directly from MD apparent force constant profiles in Figure
1 and must be refitted to avoid over-restriction of the
movement (see the discussion below). To further explore the
effects of connectivity, other definitions of the chained
residues were analyzed in simpler networks, where an
increasing range of sequential contacts was weighted over a
background of binary 1/0 contacts for cutoffs from 7 to 25
Å, confirming the i, i + 3 limit for main chain interactions
(see Figure S3 in the Supporting Information). These simple
networks also show that the overlaps follow a peak distribu-
tion around maximal values (from 8 to 15 Å) which becomes
wider and shifts to higher cutoffs as the chain length
increases. It is worth note that the one-neighbor sequence
list (topologically equivalent to the constants scaling as 100:
1:1 proposed by Jeong et al.22) gives suboptimal results,
suggesting that i f i + 2 and i f i + 3 backbone contacts
must be clearly weighted over the background defined by a
cutoff of g8 Å. The extension of the sequential singularity
to i f i + 5 interactions did not yield any improvement, as
could be anticipated from Figure 1. Interestingly enough,
the deletion of distant sequential interactions in a fully
connected, continuous network had negligible effects (see
Figure S4, top, in the Supporting Information), and con-
versely, a subminimal NMA model, where only sequential-
based i f i + 1 to i + 3 level interactions were included,
provided a quite striking agreement with ED modes (Fig-
ureS4, bottom). These findings suggest that interactions
between sequence neighbors (related to torsional angles

defining the secondary structure) are very important to define
the preferred directions of large-scale motions, and therefore,
proteins behave as robust networks of reduced connectivity
regarding their near-equilibrium dynamics.

3.1.2. Scaling of the Force Constant Energies and the
Distance Threshold for Spatial Interactions. When sequential
interactions are removed from Figure 1 (right), the apparent
force constants are found to decay with the distance following
an order 6 exponential (ncart ) 6 in eq 8). This sixth-order
inverse power law mirrors the distance dependence of the
weak, long-range electrostatic interactions determining the
3D fold. Such a dependence, previously proposed by other
authors,18,19,23 was incorporated into the method, whereas
the pre-exponential factor (Ccart in eq 8) was further refined
against structural variance plots to scale the energy; a size-
dependent distance cutoff was introduced to avoid over-
restraint of the motions (see the discussion below). In
summary, the ed-ENM model treats the strong covalent
interaction between nearest-neighbor residues with an order
2 sequentially decaying power law, whereas long-range
contacts follow the well-known sixth power law. Once this
optimal function was determined, we fitted the force con-
stants by comparison with ED estimates of the (i) total
variance, (ii) variance profile, and (iii) reduced variance in
order to scale the amplitude distribution of the modes. As
mentioned above, we explored values for the sequential, Cseq

(in the range of 40-200 kcal/(mol ·Å2)), and Cartesian, Ccart

(in the range of 2-12 kcal/(mol ·Å2)), constants, finding
optimal agreement in the training set for Cseq ) 60 kcal/
(mol ·Å2) and Ccart ) 6 kcal/(mol ·Å2). The results are robust
to changes of (10 kcal/(mol ·Å2) in Cseq and (1 kcal/
(mol ·Å2) in Ccart, particularly regarding the mode directions
(see Figure S5 in the Supporting Information).

Analysis of Figure 1 and inspection of the ED of training
trajectories reveal that there is a threshold distance from
which the apparent restriction in the movement of two pairs
of residues is very small and can be explained only by
indirect interactions (see Figure S2 in the Supporting
Information). This recommends the use of a cutoff to
eliminate restrictions to protein movement due to distant
negligible interactions. We systematically compared the

Figure 1. Dependence of the apparent residue-residue force constant (Kij
app; see eq 4) on the residue-residue distance in

Cartesian (left, Å) and sequence (right) space as determined for MD in three proteins of different sizes from the training set (see
the Methods).
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cutoff, continuous, and mixed cutoff/continuous approaches
for a wide range of threshold distances (2-25 Å). Optimum
cutoff values were determined by analyzing the dot products
between ENMs and ED modes (eq 10) and the relative
variance profiles, the magnitudes greatly independent of the
value of the force constants. The best results were obtained
with mixed continuous/cutoff approaches, and the optimum
distance threshold was found to be roughly dependent on
the protein size. The size dependence of the cutoff is also
clear in the simpler networks tested in Figure S3 in the
Supporting Information. We found that the optimal cutoff
can be formulated as an approximate logarithmic function
of the chain length, starting with a minimal value of 8 Å for
the smallest proteins (see the function in Figure S6 in the
Supporting Information). This soft size-dependent cutoff
(resulting in a practical range from 10 to 16 Å for average
to big proteins) removes irrelevant contacts, without affecting
important structural details. Subsequently, we will always
use this automatic procedure for the cutoff definition in our
ed-ENM, avoiding then an arbitrary selection for each
protein.

3.2. Validation of the Method. 3.2.1. Validation against
MD Flexibility Data for a RepresentatiVe Benchmark. As
described above, we analyzed the behavior of the new model
by comparing our ed-ENM with MD metatrajectories in an
extended set of proteins. The reference standard methods
used for comparison were the original cutoff approach and
the sixth-power exponential function developed by Kovacs
et al. (see the Methods). In all cases NMA calculations were
performed by taking the MD-averaged structure as a refer-
ence to allow direct comparison between the normal modes
and MD. All ENMs considered reproduce the ED flexibility
pattern reasonably well. Average results for the full µMODEL
set displayed in Figure 2 and more detailed results for

representative proteins in Table 1 illustrate that any of the
ENMs are able to capture the overall features of the MD
samplings as expected. Similarity indexes with respect to
ED (for 90% variance; see eq 10) are in the range of 0.5-0.6
(0.6-0.7 if the index is computed considering 50 eigenvec-
tors), with highly significant associated Zscore values (see
Table 1 and Figures S7 and S8 in the Supporting Informa-
tion). These similarity indexes are in fact not far from those
obtained by comparing MD trajectories from different force
fields among them in the range of 0.7-0.8 (see Table S1 in
the Supporting Information; see also ref 54). However, there
are considerable differences in the performance of the
different methods, and the ed-ENM leads to a moderate but
significant increase of around 3-5% in the average similarity
index, from 0.54/0.57 to 0.60 in γ90% and from 0.61/0.65 to
0.68 for γ50. Most noticeably, the greatest improvement when
using ed-ENM is centered on the prevalent eigenvectors, as
shown by the variance-weighted Perez similarity index (see
eq 12) for the 90% threshold, which increases from 0.45/
0.56 to 0.62 (see γ90% in Table 1), and similar increases in
the raw overlap between the eigenspaces defined by the first
10 low-frequency modes (see γ10 in Table 1). This close
correspondence between MD and ed-ENM lowest frequency
motions also becomes clear in the corresponding spread
values, lower than those obtained with standard methods (see
the average in Figure 2, bottom, and profiles for a few
proteins, Figure 4, left).

Analysis of total variances and variance profiles reveals
some of the most serious shortcomings of the standard
ENMs. First, they underestimate the MD total variance (by
a factor of 3-4-fold; see Table 1 and Figure 2, top right),
which means that in ENM samplings the structure is too
rigid, and this cannot be detected when using crystal
flexibility as a reference. Note that the ENM-MD deviation

Figure 2. Different metrics for the comparison between MD and ENM-NMA: black, reference MD simulations; green, present
ed-ENM model; red, standard cutoff model; blue, Kovac’s formalism.
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in variance cannot be fully explained by the fact that we are
using an MD metatrajectory as a reference, since it is also
evident in single trajectories (see Table S1 in the Supporting
Information). Interestingly, the deviation in variance with
respect to MD simulations is not uniform for the entire
deformation space (which would allow the correction by
scaling force constants), but it is larger for the first essential
movements, as shown by the reduced variance (see Figure
2, top left). In other words, the MD deformation space is
larger (in terms of variance) but less complex (i.e., fewer
eigenvectors are required to explain a given variance
threshold) than the space described by standard ENMs (see
Figure 3, left). The reason for this behavior is clear from
the analysis of the variance profiles and the force constants
(Kν in eq 9) associated with essential deformations. The
standard ENMs and MD simulations distribute variance along
the different modes in a different way: while MD defines a
small number of soft, highly collective movements which
concentrate most of the variance, in ENMs the deformability
is distributed along a larger number of eigenvectors. In
summary, not only is the total variance different, but MD
and standard ENMs also differ in how this variance is
partitioned between modes as discussed before, and this is

something that cannot be corrected by scaling a uniform
spring constant, since it is more related to the topological
properties of the network.

All metrics indicate that ed-ENM yields a remarkable
improvement in the total variance and, more important, in
the balance of deformation movements as noted in the
reduced variance, force constant (Kv in eq 9; Figure 3, right)
profiles, and complexity (i.e., number of eigenvectors to
capture a certain variance threshold) of the deformation space
(see Table 1; µMoDEL averages in Figure 2, top). It is worth
noting that the improvement obtained by using the ed-ENM
model is mainly focused on the softest, low-frequency modes
and is constant for all the size ranges of proteins considered
and for all structural families, as shown by selected examples
in Table 1. These soft modes of deformation are highly
cooperative, involving a great part of the molecule, as shown
by their collectivity degree.52 The amount of residues
involved in essential movements is similar in ENM and MD
according to the Brüschweiler index (0.4-0.6 average for
the first 50 modes), but there is a uniform tendency of
standard NMA to less collective movements (Figure 2, top
right), a situation that is corrected in ed-ENM, possibly due
to the strongest nearest-neighbor coupling. Projection of the

Table 1. Comparative Measurements of Flexibility Patterns Obtained with NMA and ED of Selected Proteins

PDB code
(CATH)

total
variancea

no. of
eigenvectorsa

(90% variance)
similarity

(γ10)c
similarity
( γ90%)b,c

Zscore
c

(90% variance)
similarity

( γ50)c
Zscore

c

(50 eigenvectors)
Pearson

coefficientc,d

1OPC 201/67/56/140 19/46/96/44 0.46/0.49/0.48 0.56/0.59/0.61 26/29/31 0.63/0.68/0.70 93/104/109 0.50/0.59/0.65
99 0.49/0.60/0.60 0.33/0.25/0.39
(R)
1CSP 86/45/46/73 20/30/61/38 0.51/0.54/0.61 0.62/0.64/0.68 37/39/44 0.64/0.70/0.72 64/75/79 0.46/0.55/0.71
67 0.61/0.68/0.72 0.49/0.54/0.62
(�)
1SDF 460/76/92/556 7/15/38/9 0.48/0.53/0.53 0.43/0.43/0.49 23/23/28 0.66/0.63/0.67 48/43/50 0.76/0.77/0.79
67 0.16/0.22/0.52 -
(R + �)
1OOI 131/38/53/103 37/131/133/74 0.28/0.36/0.40 0.59/0.66/0.68 20/34/38 0.63/0.71/0.72 127/149/151 0.40/0.61/0.60
124 0.47/0.21/0.69 0.23/0.46/0.65
(R)
1BFG 85/27/52/75 54/166/143/94 0.44/0.49/0.51 0.62/0.67/0.71 37/50/61 0.62/0.66/0.70 145/158/170 0.39/0.58/0.59
126 0.66/0.73/0.74 0.30/0.30/0.50
(�)
1CHN 359/138/71/160 15/29/118/62 0.46/0.47/0.49 0.48/0.52/0.53 19/23/24 0.61/0.66/0.68 131/146/151 0.54/0.68/0.74
126 0.38/0.52/0.55 0.35/0.62/0.53
(R + �)
1IL6 840/43/105/252 9/164/139/77 0.50/0.50/0.49 0.49/0.50/0.50 27/28/28 0.60/0.66/0.66 95/109/109 0.68/0.81/0.83
166 0.09/0.28/0.43 -
(R)
1CZT 197/42/112/146 38/140/140/97 0.42/0.49/0.49 0.58/0.65/0.69 42/54/61 0.60/0.65/0.69 111/124/134 0.51/0.56/0.72
158 0.54/0.70/0.72 0.66/0.67/0.77
(�)
1GND 1022/83/248/484 30/521/409/214 0.45/0.51/0.51 0.53/0.56/0.58 23/25/27 0.56/0.61/0.62 330/363/370 0.75/0.77/0.72
430 0.27/0.32/0.65 0.48/0.57/0.53
(R + �)
1BR5 185/47/150/274 85/353/261/146 0.40/0.44/0.45 0.62/0.68/0.68 41/59/59 0.58/0.64/0.64 200/225/225 0.65/0.71/0.73
267 0.56/0.73/0.72 -
(R)
2PIA 255/69/210/364 96/366/305/162 0.54/0.59/0.60 0.60/0.65/0.66 33/43/46 0.57/0.62/0.62 170/189/189 0.55/0.60/0.62
321 0.56/0.63/0.71 0.49/0.52/0.50
(�)
2HVM 376/32/112/183 44/449/307/184 0.41/0.45/0.45 0.55/0.61/0.60 33/43/42 0.56/0.62/0.61 177/200/196 0.68/0.84/0.81
273 0.27/0.55/0.61 -
(R + �)

a Values in the cells always correspond to the MD/cutoff NMA/Kovac/ed-ENM method. b Values in the first line of the cells correspond to
the standard Hess metrics (eq 10) and values in the second line to the Perez index (eq 12). In every line the results displayed correspond
to the cutoff NMA/Kovac/ed-ENM method. c Values in the cells correspond to the cutoff NMA/Kovac/ed-ENM method. d Values in the first
line of the cells correspond to correlations against ED atomic fluctuations and values in the second line to correlations against experimental
B factors. In every line the results displayed correspond to the cutoff NMA/Kovac/ed-ENM method.
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collective modes on individual residues allowed us to
estimate residue fluctuations in solution (see the Methods,
eq 16). As previously reported,10,42 all ENMs reproduce (see
Table 1) the MD atomic fluctuations reasonably well, with
Pearson’s correlation factors in the range of 0.5-0.6 (Spear-
man’s coefficients typically 0.7-0.8). However, when in-
dividual fluctuation distributions are compared (see Figure
4, right), the shortcomings of standard ENMs become evident
in a flattening of the profiles, resulting from the problems
of ENM in capturing local but large nonharmonic deforma-
tions. It is also worth noting that even our interest was not
in the description of flexibility in the crystal but that in
solution, where the ed-ENM approach also yields a slight
improvement (see Figure 4 and Table 1) in the X-ray B factor
profiles. We also found that it is possible to raise the
correlations for B factors by increasing the distance threshold
(unpublished data), but as a result the structure becomes
stiffened and the accuracy decreases in other global flexibility
measurements, such as the similarity index, variance profiles,
or overlap with transition vectors (see below). A simple
postprocessing of positional fluctuations allows the derivation
of Lindemann’s index (see the Methods, eq 17), a key

descriptor to analyze the macroscopic nature of proteins. The
results in Table S2 in the Supporting Information illustrate
the superiority of the ed-ENM with respect to the standard
methods to estimate the absolute MD-derived Lindemann
index. The ed-ENM nicely reproduces the core/surface (solid/
liquid) asymmetry of proteins and the different macroscopic
behavior of the main classes of secondary structures.

3.2.2. Robustness for Large Proteins and Extended Simula-
tions. All results reported to this point suggest that the ed-
ENM provides a better approximation of protein flexibility
in solution when compared to standard ENM models. There
are, however, two reasons for concern that have not yet been
addressed regarding the behavior of the model on the
biologically relevant time and length scales: (i) What happens
when large proteins are considered (larger than those
analyzed during the calibration)? (ii) What happens when
the new ed-ENM is compared with the flexibility description
obtained from long trajectories, where the protein is expected
to display larger nonharmonic deformations? To answer the
first question, we extended our study to several large and
multimeric proteins (from 600 to 2500 residues), finding that
ed-ENM captures well their fundamental dynamics (see

Figure 3. Cumulative variance with respect to the number of eigenvectors (left) and strengths of the essential deformation
modes (right, Kν in eq 9) computed by the different methods for some typical proteins (the inset corresponds to a zoom of the
first eigenvalues). Illustrative proteins of different sizes and secondary structure compositions are displayed (the name and
number of the residues are shown in each graph). The color code is as in Figure 2.

Figure 4. Spread of the eigenvectors in the ED eigenspace for randomly selected proteins (left). B factor profiles (Å2) computed
by the different methods for a selected number of proteins (right). Values obtained considering in all cases movements along
the first 50 eigenvectors. The color code is as in Figure 2.

2918 J. Chem. Theory Comput., Vol. 6, No. 9, 2010 Orellana et al.

http://pubs.acs.org/action/showImage?doi=10.1021/ct100208e&iName=master.img-003.jpg&w=480&h=170
http://pubs.acs.org/action/showImage?doi=10.1021/ct100208e&iName=master.img-004.jpg&w=480&h=166


Table S3 and Figures S9 and S10 in the Supporting
Information). This confirms that the method can be trans-
ferred to analyze large systems, difficult to tackle by MD
simulations. The second challenge was to compare the ed-
ENM modes to those derived from long MD trajectories
(from 0.1 to 0.5-1 µs), where nonharmonic movements are
likely to have more impact on the dynamics. Once again,
all the metrics demonstrate the robustness and generality of
the ed-ENM, in particular, in correcting the splitting of the
soft modes observed in standard approaches (see Table S4
and Figures S11 and 12 in the Supporting Information).
However, though the variance descriptors remain at the same
order of magnitude, there is a uniform tendency for all ENMs
to lower the similarity indexes when the time span of the
MD is exteded (see similarity index values falling from
0.6-0.7 to 0.4-0.5 for 1CQY and 1OPC in Table S4). This
is not surprising since, in a longer trajectory, the structures
are able to explore a wider conformational subspace and thus
undergo anharmonic departures from equilibrium that cannot
be fully captured by any NMA-based approach as discussed
above.

3.2.3. Validation against Empirical Flexibility Data
from X-ray and NMR. Finally, we tested the method against
experimental data on flexibility from both X-ray conformer
transitions and PCA of selected NMR ensembles (see the
Methods). First, we analyzed the ability of ed-ENM to predict
functional important closed/open transitions between X-ray
conformers. These large-scale rearrangements involve co-
operative motions of domains or subunits, behaving as rigid
clusters but preserving the overall fold; in this case the local
cohesion prevails over interdomain, long-range interactions.
Hence, a great shortcoming in continuum ENM approaches
is the over-restriction of displacements between domains,
as noticed before.23 On the other hand, ENM cutoff ap-

proaches display a difficult balance between violation of
dihedral constraints for lower distance thresholds and over-
restriction of motions if increased. We expected that the
combination of a sixth power law with a soft size-dependent
cutoff, together with the strongest, inverse-square cohesion
limited to neighbors, would allow more natural internal
movements. To verify our hypothesis, we studied a bench-
mark of selected conformational transitions from the mac-
romolecular motion database MolMovDB54 (http://www.
molmovdb.org). Average results for the full benchmark (54
structures) and detailed data for 10 selected cases are
displayed in Table 2: 4 structures undergoing large transitions
(rmsd > 7 Å) and 6 more with local, less dramatic changes
(rmsd ) 2-6 Å). The results show that all ENMs encode
the functional transitions in their intrinsic flexibility, but the
ed-ENM provides the best agreement between the transition
vector and the harmonic deformation space. In the open
forms, considering only the first 5 modes, the overlaps range
from around 0.60 to 0.95 (average 0.7) and from 0.70 to
0.97 (average 0.76) if the harmonic space is extended to 10
modes (see γ5 and γ10 in Table 2); note that random
deformations would yield overlaps around 0.08 (5 eigen-
vectors) and 0.16 (10 eigenvectors). There is a systematic
trend to better performance of the ed-ENM (2-5%) regard-
less of the extent of the transition, particularly remarkable
when considering only the first five dominant modes. The
greatest improvement using the ed-ENM is achieved for the
closed forms, more difficult to treat since they can be easily
overconstrained by long-range springs: in this case γ5

increases by nearly 10% (from 0.50 in standard approaches
to almost 0.60). The agreement is particularly surprising in
the most challenging cases, where other ENMs fail dramati-
cally (see, for example, the closed f open transition for
1CKM (B), 1AMA, and 1DAP). These notable differences

Table 2. Rmsd (Å) between X-ray Conformations, Overlaps (%) between Essential Deformation Spacesa and the Transition
Vector, and Rank of Maximum Overlapb for the Cutoff, the Inverse Exponential Model, and the ed-ENMc

length (no. of residues) (CATH) PDB code rmsd γ5
d γ10

d rank differenced,e

101 1L5E (open) 8.8 0.76/0.43/0.81 0.81/0.76/0.85 0 (0.70)/0 (0.66)/0 (0.65)
1L5B (closed) 0.83/0.80/0.81 0.86/0.85/0.87 1 (0.27)/1 (0.28)/2 (0.55)

148 1CFD (open) 10.2 0.88/0.93/0.94 0.93/0.94/0.95 1 (0.38)/0 (0.62)/1 (0.55)
1CFC (closed) 0.83/0.89/0.89 0.93/0.92/0.94 1 (0.55)/0 (0.45)/1 (0.55)

214 4AKE (open) 8.3 0.90/0.90/0.92 0.93/0.92/0.93 0 (0.67)/0 (0.38)/0 (0.67)
1AKE (closed) 0.55/0.57/0.64 0.61/0.68/0.71 0 (0.32)/0 (0.36)/0 (0.40)

219 1NBV (H) (open) 2.2 0.69/0.69/0.70 0.73/0.72/0.73 2 (0.68)/0 (0.29)/0 (0.32)
1CBV (H) (closed) 0.68/0.69/0.71 0.72/0.71/0.72 2 (0.38)/2 (0.40)/0 (0.37)

271 1URP (open) 7.7 0.96/0.93/0.95 0.96/0.95/0.97 1 (0.94)/1 (0.72)/1 (0.80)
2DRI (closed) 0.83/0.82/0.88 0.86/0.88/0.92 0 (0.62)/0 (0.56)/1 (0.71)

317 1CKM (A) (open) 4.3 0.93/0.91/0.93 0.94/0.93/0.95 0 (0.86)/0 (0.44)/0 (0.88)
1CKM (B) (closed) 0.21/0.49/0.57 0.65/0.73/0.78 6 (0.29)/2 (0.14)/4 (0.23)

320 3DAP (open) 5.8 0.89/0.90/0.93 0.94/0.92/0.95 0 (0.75)/1 (0.58)/0 (0.68)
1DAP (closed) 0.20/0.18/0.27 0.44/0.62/0.78 9 (0.19)/7 (0.33)/4 (0.22)

401 9AAT (open) 2.2 0.15/0.07/0.55 0.68/0.64/0.71 5 (0.26)/5 (0.45)/4 (0.44)
1AMA (closed) 0.07/0.08/0.60 0.68/0.67/0.76 6 (0.30)/5 (0.39)/6 (0.30)

452 1BNC (open) 5.4 0.84/0.85/0.87 0.87/0.90/0.90 0 (0.83)/0 (0.71)/0 (0.81)
1DV2 (closed) 0.70/0.69/0.76 0.77/0.80/0.85 4 (0.22)/0 (0.40)/0 (0.48)

517 1RKM (open) 5.8 0.93/0.92/0.93 0.94/0.94/0.95 0 (0.91)/0 (0.84)/0 (0.92)
2RKM (closed) 0.62/0.64/0.67 0.68/0.75/0.73 1 (0.32)/0 (0.52)/0 (0.42)

avg open 0.66/0.67/0.70 0.75/0.75/0.76 0.9 (0.69)/0.6 (0.57)/0.6 (0.67)
closed 0.51/0.53/0.58 0.65/0.67/0.69 3.0 (0.35)/1.7 (0.38)/1.7 (0.42)

a Considering the first 5 and 10 eigenvectors. b See the Methods for a description of the different metrics. c Examples from the NMAfit
benchmark. d Values in these columns are for the cutoff/inverse/ed-ENM. e In parentheses, the dot product of the maximal overlap vector is
given.
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are related to the concentration of the conformational change
in the first dominant eigenvectors. Accordingly, the rank
differences are often also smaller and the best overlapped
eigenvectors closest to the transition direction. In summary,
the ed-ENM displays a higher cooperativity and less disper-
sion of the motionssas in the above comparison with
EDsand thus traces the functional changes with fewer
modes.

Finally, we analyzed the ability of ed-ENM to approach
the structural diversity of NMR ensembles, which in a first
approach can be related (not in a fully rigorous manner) to
the experimental flexibility pattern. The analysis of 20
selected NMR multiple structures shows striking correlations
with the three ENMs (see Table 3), which confirms previous
results31 and supports the validity of ENMs to sample the
near-equilibrium conformational space in solution. It is also
clear that the ed-ENM method outperforms the other two
ENM approaches, especially when considering only the first
5 eigenvectors whose overlap γ5 increases from 0.56/0.54
to 0.61 and the best overlapped pair (γmax), which increases
from a 0.65/0.61 average to 0.74, reaching values near 0.90
(see 1BVE, 1ITI, and 1BF8) or even above (1A6X, 1E5G,
and 1XSB). In more than half of the proteins (11 cases), the
best overlapped vector is found in the ed-ENM method,
followed by the inverse (5 cases) and cutoff (4 cases)
approaches, following the trend observed in the rest of the
tests. In conclusion, the ed-ENM seems to provide a
significant and systematic improvement in the description
of protein dynamics (as deduced from structural diversity in
NMR ensembles) with respect to the two most used ENM
implementations.

4. Conclusions

The ability of the elastic network NMA models to predict
qualitatively the intrinsic motions of proteins has been widely
demonstrated in the past few years. In comparison with MD,

ENMs tend to yield a sparser pattern of flexibility, related
to their harmonic character, and then, the information
required for a realistic description of a functional motion is
dispersed into a higher number of modes.42 Another problem
of ENMs has been the lack of consensus in the refinement,
mainly due to the scarcity of direct measurements of protein
flexibility. In previous studies we demonstrated that MD
gives an accurate picture of flexibility in solution.37 In this
work we have used atomistic simulations as an alternative
source for ENM refinement to extract connectivity rules and
obtain a realistic scaling of the force constants. These
constraints led to the formulation of a new ED-refined ENM
(ed-ENM), based on a simple hybrid potential considering
chain topology, which has been validated against a database
of MD trajectories. The method proposes a simple and robust
scaling of the local backbone and long-range contacts,
avoiding any arbitrary, free parameters. A soft size-dependent
cutoff is applied to eliminate noise from irrelevant contacts
and increase computational efficiency when dealing with
large systems. Our goal was not to reproduce any particular
flexibility measurement (such as B factor profiles), but rather
to develop a general method able to trace protein flexibility
better than or at least as well as the best performing standard
approach for the widest range of descriptors and the largest
variety of protein sizes and folds. As discussed above, higher
scores for individual flexibility measurements can be achieved
by problem-specific adjustment of the ENMs, but only
compromising accuracy in other aspects. For example, large
cutoffs boost correlations with B factors, but the resulting
more rigid structures cannot display large conformational
transitions. Clearly, when considering all the flexibility
measurements presented here, the ed-ENM outperforms
standard approaches in the representation of both local and
global flexibility for a wide range of proteins and without
any ad hoc adjustments. Comparisons to submicrosecond MD
suggest that ed-ENM is flexible enough to partially capture

Table 3. Cumulative Overlaps between the First 10 (γ10) Normal Modes and PCs from NMR Ensembles and Largest
Overlap (γmax) between an ENM Mode and the Best Overlapped PC for Each Set (See Eq 10) for 26 Proteins

PDB code N M γ(5)
a γ(10)

a γmax

1RO4 58 35 0.56 0.52 0.58 0.57 0.53 0.62 0.59 0.33 0.72
1E9T 59 59 0.51 0.48 0.63 0.53 0.54 0.58 0.48 0.57 0.64
1BW5 66 50 0.69 0.59 0.74 0.56 0.56 0.62 0.53 0.63 0.78
2EOT 74 32 0.52 0.42 0.61 0.56 0.41 0.55 0.57 0.76 0.54
1A6X 87 49 0.55 0.44 0.56 0.41 0.37 0.48 0.54 0.37 0.95
1BVE 99 28 0.47 0.52 0.49 0.33 0.36 0.37 0.81 0.7 0.88
1Q06 101 55 0.57 0.58 0.57 0.51 0.60 0.57 0.51 0.58 0.77
2CZN 103 38 0.62 0.55 0.66 0.50 0.53 0.51 0.87 0.65 0.70
1A90 108 31 0.36 0.44 0.49 0.38 0.40 0.42 0.65 0.49 0.83
2BO5 120 44 0.54 0.37 0.58 0.55 0.45 0.56 0.73 0.57 0.68
1E5G 120 50 0.71 0.70 0.69 0.60 0.64 0.63 0.93 0.90 0.96
1CMO 127 43 0.70 0.61 0.70 0.56 0.52 0.59 0.56 0.60 0.52
1ITI 133 31 0.53 0.65 0.59 0.46 0.51 0.44 0.78 0.78 0.89
1C89 134 40 0.70 0.76 0.80 0.55 0.60 0.63 0.53 0.69 0.63
1XSB 153 39 0.46 0.43 0.49 0.44 0.38 0.43 0.89 0.41 0.92
1BF8 205 20 0.47 0.55 0.54 0.43 0.47 0.48 0.86 0.78 0.88
1BY1 209 20 0.55 0.55 0.56 0.42 0.46 0.47 0.50 0.65 0.53
1N6U 212 22 0.63 0.61 0.59 0.58 0.58 0.58 0.64 0.37 0.60
2JZ4 299 20 0.53 0.51 0.61 0.41 0.40 0.45 0.49 0.80 0.74
2D21 370 20 0.60 0.56 0.65 0.50 0.47 0.50 0.67 0.62 0.62

avg 0.56 0.54 0.61 0.49 0.49 0.53 0.65 0.61 0.74

a Values in these columns are for the cutoff/inverse/ed-ENM.
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nonharmonic deformations. The method is robust, general,
and transferable and can describe large conformational
transitions required for biological activity. Finally, we have
demonstrated that the method introduced here captures the
flexibility of NMR structural ensembles with remarkable
precision. Therefore, the bulk of results presented demon-
strate that the ED-refined ENM can be a useful alternative
to well-established coarse-grained NMA methods. The ability
of a minimalist model based on close-chain neighbor
interactions both to match molecular dynamics and to trace
these complex transitions strongly supports the hypothesis
that local covalent topology encodes an important part of
the intrinsic flexibility pattern of proteins and thus guides
biologically relevant conformational changes. Though this
idea may appear somewhat counterintuitive, given the
importance of long-range interactions for the 3-D fold, it is
just outlining the fact that conformational transitions usually
involve motions of rigid residue clusters that maintain the
local fold and that this local fold is dependent on the nearest-
neighbor contacts, sterochemically restrained. Thus, not only
the global contact topology11,54-57 but also the inner topology
defined from nearest-neighbor contacts plays a great role in
the determination of these lowest energy, intrinsically favored
modes.
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