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Abstract

Cache techniques are an efficient tool to reduce latency
times in transfer operations through Grid systems.
Although different approximations to introduce cache facil-
ities into Grid computing have already been studied, they
require intrusive modifications of Grid software and hard-
ware. Here, we propose an end-to-end cache system that
is implemented over scheduling services. This cache sys-
tem requires neither changes in the Grid software nor intro-
duction of new software in the Grid resources. Parallel Grid
adaptation of many high-throughput computing applica-
tions that use the same data intensively could enjoy great
benefits from our cache system. The maintenance of
cacheable data in the resources of already-executed tasks
allows faster executions of future tasks assigned to the
same resources. To analyze the performance of our end-
to-end cache system, we tested it with a new protein–pro-
tein docking application. The obtained results confirm our
cache system’s robustness and efficiency gain for this kind
of high-throughput application.
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1 Introduction

The phenomenal growth in computer networks and com-
munication over the Internet has engendered new para-
digms to meet the needs of hard computational applications.
Grid computing exploits high computational power and
gives access to large numbers of distributed data using a
geographically distributed global and heterogeneous
resource pool (Foster and Kesselman, 1999; Baker et al.
2002; De Roure et al. 2003). Using these delocalized het-
erogeneous resources controlled by different administra-
tions requires solving a wide range of problems related to
their coordination and security. To face such problems,
different approximations have provided middleware,
such as Globus (Foster and Kesselman, 1997), GRIA
(Surridge et al. 2005) or UNICORE (Romberg, 2002), to
supply services to manage Grid environments. Among the
services provided by middleware, efficient data commu-
nication through the Grid environment is critical due to its
distributed nature. Caching techniques can improve data
communications. These techniques are an efficient way to
manage temporary data and reduce latency times when
common data are accessed frequently.

Different approximations to introduce cache mecha-
nisms into Grid computing have already been studied;
however, they have mainly been oriented towards the use
of collaborative cache systems working at different levels
in the Grid middleware. Therefore, middleware modifi-
cations and the introduction of specific hardware into the
environment are necessary. Here, we propose an end-to-
end cache system that can be implemented over the pro-
cedure that schedules tasks to resources. It requires neither
modification of the Grid middleware nor installation of
new services in the Grid resources. This novel cache sys-
tem is inspired by Web caches. Briefly, Grid resources use
scheduler facilities to maintain cache buffers. These cache
buffers contain the input files of previous executions,
which can be reused for future tasks. This strategy lowers
the transfer time for task settling.

This cache system reduces the execution response time
of high-throughput computing applications that operate on
the same data repeatedly. A wide range of applications in
different scientific areas, such as bioinformatics, physics
or astrophysics, can make good use of this cache system.
Grid adaptation of these applications usually implies paral-
lel execution of tasks that use the same data. A cache sys-
tem will facilitate the execution of tasks by reusing data
from previous tasks. Here, we study the performance of a
new protein–protein docking application. Protein–protein
docking predicts the three-dimensional structure of a
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macromolecular complex from the unbound structures of
its components. It requires a large and costly search of all
the possible relative docking positions. The search uses
information about the components repeatedly to do such
an exhaustive search. The use of our cache system will
reduce the transfer time needed in a Grid environment,
where parallel tasks explore different regions of the dock-
ing search space.

The paper is organized as follows: Section 2 surveys
the different cache systems proposed for Grid computing
in the scientific community; Section 3 describes our novel
end-to-end cache system, showing alternatives for differ-
ent possible scenarios; Section 4 adapts this cache system
over the GridWay meta-scheduler; Section 5 describes the
challenging bioinformatic application (FRODOCK) used
to test the cache performance; Section 6 compares the per-
formance achieved by FRODOCK over a Grid environ-
ment with and without the new end-to-end cache system;
and Section 7 presents conclusions and future work.

2 Grid Cache Systems Overview

A Grid environment is a distributed system, usually over
the Internet, where large data entities must be moved fre-
quently between different sites. This requires intensive and
efficient use of network and storage resources to minimize
transmission latency times. Although services such as Grid
file transfer protocol (GridFTP) (Bresnahan et al. 2007)
and reliable file transfer (RFT) (Madduri et al. 2002) in
Globus allow data transmission through Grid environ-
ments, they do not provide policies to organize transmis-
sions efficiently. In this sense, data movement in a Grid
environment is similar to intensive hyperText transfer pro-
tocol (HTTP) traffic over the World Wide Web (WWW).
Although the characteristics of data movement in both
environments are not exactly the same (more intensive
communication in the WWW, but with lower data load
and a different communication model, etc.) the mechanics
to improve one environment can be adapted to the other.
By storing, replicating, and managing data in temporal and
distributed repositories, WWW caching (Barish and Obrac-
zka, 2000) provides a set of techniques to reduce traffic
latency. An obvious alternative is the adaptation of Web
caching mechanics to Grid environments to boost traffic
efficiency. Different variations of Web caching appear as a
function of different configurations: the location of the
cache repository (in the client machine that requests the
information, in the provider machine, in a middle node
through the communication path), the level of transpar-
ency of the cache to the users, the use of communication
between different cache systems in different machines, the
refreshment and replacement policies of the cache reposi-
tory, and the mechanics to secure data consistency. All
these features, when correctly adapted, provide mechanics

to create suitable cache functionalities for a Grid envi-
ronment. Taking into account the available middleware
services and the nature of the applications to be supported,
different approximations can be implemented.

Initial versions of the Globus toolkit middleware
included a data movement and access service called Glo-
bal Access to Secondary Storage (GASS). This service pro-
vided applications with access to remote files (Bester et al.
1999). Among the features incorporated into the service to
obtain high performance, GASS implemented movement
strategies where cache space was kept over resources,
reducing data movement through the Grid. In this way,
GASS provided a distributed, multi-user system cache.
However, this cache system scaled poorly, due to data
replica management. The GASS service was finally con-
sidered obsolete and removed from version 4 of the Glo-
bus Toolkit. Yonny et al. (2007) have proposed a basic
infrastructure for the management of collaborative caches
to operate and control different cache mechanics dynami-
cally in a Grid environment. In this cooperative system,
different caches exchange both data and metadata. There-
fore, it is mandatory to implement cache system services in
all the resources, since each cache system depends on local
and Grid facilities. As this infrastructure is for scientific
applications, they dismiss issues such as coherency and
consistency of duplicate data because of the read-only
nature of the data in use. Other authors have studied the use
of a remote shared cache for Grid resources (Tierney et al.
2000). This system is a hardware-based solution, as physi-
cal elements must be introduced into the Grid environment
to act as cache servers. Here, the concept of “cache” means
fast storage with a temporal nature. The shared cache for all
the resources in the Grid cache is implemented with a Dis-
tributed-Parallel Storage System (DPSS). Briefly, a DPSS
consists of a set of low-cost workstations, each one of
which has several parallel disks. A DPSS distributes data
over these workstations and allows concurrent data access.
The workstations keep a cache window of the data, while
the parallel disks act as tertiary storage that maintains the
full data repository. Each data source deposits data in the
cache, and data consumers read from and eventually
modify the information. The aim of this system is to pro-
vide fast access to a large number of data produced in
high-speed data streams resulting from many scientific
applications. This cache system does not require a consist-
ency policy, as data are not replicated. Other hardware-
based cache systems have been developed. The concept of
a Storage Resource Manager (SRM) is introduced as a
Grid component to support storage management of large
distributed datasets (Shoshani et al. 2004). Although this is
not a cache service, it includes cache techniques to make
data access more efficient. Cache replacement policies
over SRMs (Liu and Song, 2008; Otoo and Shoshani,
2003) are proposed with an evaluation model adapted to
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the data transfer in Grids. Other approximations also use
some of the concepts of caching techniques to provide
different Grid functionalities, such as a high-level data
replication service proposed in Chervenak et al. (2005). In
this approach, services in different resources store repli-
cated data, keeping information about their locations and
transferring it through the Grid environment as neces-
sary. Although the system uses a replication policy simi-
lar to policies usually present in cache systems, the aim of
the service is fast dissemination of information over the
Grid environment, without taking into account the reduc-
tion of Grid traffic or temporal storage.

3 End-to-End Cache System

All the approximations to a Grid cache system described
above require the introduction of new elements in the Grid
environment. They introduce either new software services
on the Grid resources or new hardware to provide cache
services. This intrusive implementation entails a complex
process. Tasks, such as the dissemination of the required
software, introduction of hardware, and modification of
previous services and protocols, could be very costly and
laborious. Moreover, the intrusive implementation must be
accepted by the Grid community, which must collaborate
in the implementation process. Although these drawbacks
are not intractable and are part of the creation and evolu-
tion of Grid environments, it is possible with existing
middleware services to introduce cache facilities without
intrusive strategies such as those mentioned above. We
present a Grid cache system with cache buffers imple-
mented over resources with no new hardware or software
requirements. We designed this cache system to facilitate
the execution of scientific high-throughput applications in
which parallel tasks operate on shared data, providing
similar GASS functionality of earlier versions of Globus.

This new end-to-end cache system takes advantage of
the necessity of scheduling. Grid scheduling (Foster and
Kesselman, 1999; Schopf, 2004) is the task of discover-
ing, evaluating, and allocating resources in the Grid to
perform tasks. Before the Grid executes a task, a staging
process takes place to choose a suitable resource and to
create an application environment on it for the input data.
To this end, the scheduler transfers the files to the resource
and executes a batch scheduling routine. Similarly, when
the task completes the execution, the scheduler must recol-
lect output data and move the data to the user’s location.
All these stages are done by scheduling services that inter-
act with local services in the resources and with middle-
ware services to get information about resources and data
transfer. A scheduler service acts as a proxy service, con-
necting users with the Grid’s computational potential
while hiding the complexity of middleware services in a
heterogeneous environment. A cache system can be

implemented easily by modifying the scheduler to run
cache repository management operations in addition to its
regular staging and recollection actions. In this cache sys-
tem, the cache repositories are kept in the resources and
management is realized from the user’s machine. All of
the communication to control the cache repositories takes
place over the scheduler services, avoiding intrusive mod-
ifications to resources. This cache system works over the
services in the middleware layer and is completely trans-
parent to the user.

3.1 End-to-End Cache Architecture

The target data that our system aims to cache are mainly
application input files. To do a task, the user calls a
scheduler service from a Grid resource (the user’s node),
which distributes executions to computational elements
(cluster-worker nodes inside Grid resources). The cache
system manages cache directories in all of the worker
nodes that execute tasks. In such directories, cacheable
input files must be copied. When a cacheable file is
needed, the cache system checks whether it can be found
in the cache directory (because a previous task has cop-
ied it) or whether it must be transferred from the user. 

Note that this system, although distributed through the
resources of the Grid, works as a local cache for a single
user. We have not implemented a multi-user cache system
because of the impossibility of staging a multi-user com-
mon cache directory with user permissions in worker
nodes. As all of the cache management operations are
realized by the scheduler, they cannot exceed the user’s
capabilities. Therefore, the cache directory can only be
established over a user-owned storage directory provided
by the local administrator, which cannot be accessed by
other users. Although the use of replica management tech-
niques can solve this lack of common storage, it has been
settled that their introduction would produce scalability
problems in the cache implementation, similarly to what
happened in the GASS service. This cache system is
mainly designed to support high-throughput applications,
allowing data reusability for parallel tasks of the same
application. The specific nature of this kind of application
makes common data for different users unlikely. Moreo-
ver, security considerations preclude common storage
since it could allow access to users’ private data. Coher-
ence mechanisms are also unnecessary because cacheable
data are not modified. There is no need to implement a
cache replacement policy. Since the disk storage policy is
under local administration, it is not possible to determine
the maximum available cache size or when a cache file is
deleted. Finally, because of the high-throughput orienta-
tion of the cache system, data reuse between different
applications is not expected. Therefore, instead of a cache
replacement policy, it is more suitable to introduce a
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mechanism to delete an application’s data after all of its
tasks have been completed. 

As we will show below, this type of cache system sig-
nificantly improves the performance of applications that
use input data intensively or in adaptations of high-
throughput applications where parallel processes operate
on shared data.

The implementation of transfers is a key design feature of
the cache service. Usually, a cluster front-end provides
access from the Grid environment to different organizational
resources. This cluster front-end receives Grid external
requests and, depending on their characteristics, determines
the suitable worker node to be employed. All of the commu-
nication produced by scheduler services to employ
resources must be addressed to cluster front-ends. In some
organizations, the secondary storage is shared by all of the
computational resources. In other words, copying a file to
the front-end makes it accessible to all of the cluster-
worker nodes. In this situation, the scheduler can launch
the transmission of the input data to the cluster front-end,
knowing that these data will be accessible to any worker
node of this resource. In this situation, all of the transfer
processes can be managed by the scheduler from the
user’s node. A more complex scenario arises if the sec-
ondary storage is not shared. In this case, copying data in
the cluster front-end does not guarantee its accessibility
by the selected worker node. Thus, the scheduler cannot
initialize the transmission process without knowing the
final destination. To prevent this situation, the process
must be initialized from the worker node after it is chosen.

Because of the existence of these two possible sce-
narios, the scheduler must implement different transfer
schemes in order to manage remote executions. When
shared secondary storage is available in the resources, the
scheduler maintains local control in the transfer processes
by a direct transfer scheme (the transmission is launched
from the user’s node to the cluster front-end); other-
wise, the transfer processes must be initiated remotely
from the cluster-worker nodes. In this case, the sched-
uler must implement a reverse transfer scheme (the trans-
mission is required from the cluster-worker node to the
user’s node). The employed transfer scheme affects the
cache service implementation directly. This implementa-
tion must be adapted by establishing two different cache
policies: the centralized cache policy, to work over the
direct transfer scheme, and the remote cache policy, to
work over the reverse transfer scheme. The next sections
describe these two operational modes.

3.1.1 Centralized Cache Policy (Shared Secondary
Storage) In this case, the data can be directly pre-loaded
from the user, since the scheduler service can reach the
cluster-worker node storage. The scheduler must assess
the availability of the cacheable input files in the target

resources. To do that, this service maintains a cache data-
base containing information about which files have been
copied to the different cluster front-ends. With this data-
base, the scheduler can control data contents in the differ-
ent Grid resources, determining when it is necessary to
transfer a data file to a resource and when this transfer
operation can be avoided because a previous instance of
the file exists in the resource. The scheduler must interact
with the database when staging a task in a resource to
determine the convenience of the transfer operations and
to actualize the contents in the database, indicating that
new cached data are accessible in a resource. In addition,
the cluster-worker node’s local scheduler routine must be
modified to operate with the cache directory, extracting
cacheable data from it. Finally, since disk storage is under
each resource’s local administration, the maintenance of
cache directories is compromised. Depending on the
administration policy, cache directories can be kept all
the time, periodically erased or even deleted just after the
execution of a task. For this reason, mechanics to guaran-
tee the consistency of the database must be provided.

3.1.2 Remote Cache Policy (Non-shared Secondary
Storage) When direct access to the secondary storage
of the cluster-worker nodes cannot be established from
the user, the communication will be initiated from the
recipient (the cluster-worker node). In this situation, the
cluster-worker node determines the convenience of trans-
ferring cacheable files, checking the cache directory
instead of consulting a database in the user’s node. Con-
sequently, all of the cache transfer management is dele-
gated to routines executed on the cluster-worker node.
These routines also have to carry out access operations
over the cache directory, extracting cacheable data as in
the centralized policy. Finally, because no database in the
user’s node is required in this case, there is no need for
consistency operations as in the centralized policy case.

3.2 End-to-End Cache Implementation

To manage the cache replicas and avoid duplications in
the cache directories, the input files are labeled with mes-
sage-digest algorithm (MD5) identifiers to ensure univocal
identification. Briefly, the steps followed by the scheduler
to manage the cache when a task is launched are:

1. identify the MD5 labels of the cacheable input files;
2. in the selected cluster-worker node, check

whether files with the MD5 labels can be found;
3. if they are present, create links to the cache files in

the task-work directory;
4. otherwise, transfer the input files from the user to

the cache directory in the cluster-worker node and
link them from the work directory. 
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The implementation of these operations depends on the
policy established.

3.2.1 Centralized Cache Policy The scheduler inter-
acts dynamically with the database when content in the
cluster front-end cache directories is modified. The basic
operations of this interaction are:

• insert entry: include record entries for new cacheable
files in a resource;

• delete entry: remove records of files that no longer
exist in a resource;

• check entry: check the status of a file in a resource;
• recover all entries: give access to the full collection of

records.

Note that all of these operations require the resource
names and file MD5 identifiers. These operations are
accomplished during the process of task launching in
the Grid environment. During the staging phase in a
resource, together with the regular operations, the sched-
uler checks in the cache database which cacheable files
must be copied to the resource cache directory (see Fig-
ure 1).

Fig. 1 Differences in the staging process without and with a cache system. Without a cache system (A): a suitable
environment directory for the execution of the task is created (step 1) and scheduling routine and non-cacheable
files are copied over it (steps 2 and 3). With a cache system (B): in addition to steps 1, 2 and, 3, the cache database
is consulted about the existence of the cacheable files over the cluster front-end (4), those that are not in the
resource are copied to the cache directory (6). Note that the cache system requires the cache directory creation
when it is not found in the cluster front-end (5). 
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Once the scheduler has set the execution environment,
the cluster front-end selects a cluster-worker node to do
the task. Over this cluster-worker node, a routine carries
out local operations for preparing the execution of the task
and launches it. The local operations must include both
linking previous existing cacheable files in the task direc-
tory and new files copied by the scheduler (see Figure 2).

When new files are copied in the cache directory, the
scheduler modifies the cache database to include the new

instances of the cacheable files in the resource. The mod-
ification of the cache database must be done only after
obtaining feedback about cache staging. Therefore, it is
generally necessary to wait for the end of the task execu-
tion (see Figure 3).

Finally, due to lack of control over disk storage policy
in the resources, the scheduler periodically checks
whether the entries in the cache database are up to date
and accurate. At a fixed interval, the scheduler recovers

Fig. 2 Comparison between staging local operations in a cluster-worker node without and with a cache system.
Without a cache system it is only necessary to launch the task’s executable with the corresponding input files (3). To
give support to the cache system, links to both previously existing cacheable files in the cache directory (1) and
cacheable files copied by the scheduler (2) must be established before launching the executable. Finally, the task
executes (3). 
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all of the records from the cache database and, for each
instance, queries the corresponding cluster front-end
about the existence of a cacheable file. If the answer is
negative, that is, the cache file is not present, the sched-
uler deletes the instance in the cache database; otherwise,
the cache entry is updated to keep track of the last access
(see Figure 4). Accomplishing these check operations in
a suitable interval guarantees database consistency. In the
unlikely case that a task launches while the cache data-
base is inconsistent with data content in the resource, the
task will fail due to lack of input information, forcing the
scheduler to reschedule the task execution. A suitable
interval in the checking process will avoid a second con-
sistency miss. The reduction in the execution productiv-
ity due to this situation is acceptable because of its low
probability. Finally, note that in the extreme case where
the local administration policy erases all data after the
execution of a task, the cache system is useless.

3.2.2 Remote Cache Policy As explained in the archi-
tecture description, a routine executed by the scheduler
over a cluster-worker node will carry out all cache man-
agement. During the staging process, the scheduler only
creates the task’s environment, establishing regular com-
munication with the cluster front-end. This cluster front-
end chooses a suitable cluster-worker node where the
task directory will be created and a scheduling routine will
be transferred. Then, the scheduling routine prepares the
execution of the task. In addition to the regular actions, the
scheduling routine stages input file processing: that is, it
checks whether the cache directory exists, creating it if
not, links the available cacheable files of the cache direc-
tory to the task directory, and copies the missing ones
from the user. After all of these operations, the task can
be safely executed (see Figure 5).

Fig. 3 Recovering process without and with a cache system. Without a cache system (A) the output files obtained
in the task’s execution must be recovered (1). With a cache system (B), if feedback confirming success in cacheable
files transfer is returned, entries for the cacheable files are also inserted into the cache database (2).
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3.3 Policy Comparison

Both policies’ performances are similar. Only the cen-
tralized policy produces additional Grid communication
transit between the user and the cluster front-ends for
maintaining consistency in the cache database. How-
ever, this transit only implies signals without data load.
Moreover, the centralized policy allows the scheduler
service to know where cacheable files have been
staged. The scheduler can use this information to decide
how to stage tasks more efficiently, giving priority
access to resources with specific required files. This is a
clear advantage of the centralized policy over the remote
one. Nevertheless, the centralized policy can be set only
when the scheduler transfer scheme is direct and the
cluster front-end and cluster-worker nodes share second-
ary storage in all of the resources in use. On the con-
trary, the remote policy is more versatile and can be used
in both cases, with or without shared secondary storage,
and in environments where a combination of both types
is present.

4 Cache System Adaptation over the 
GridWay Meta-scheduler

Grid scheduling or super scheduling has been defined in
the literature as the process of scheduling resources over
multiple administrative domains. Currently, a great vari-
ety of schedulers have been implemented. Some exam-
ples are AppLeS (Su et al. 1999), GridLab (Allen et al.
2003), Condor-G (Frey et al. 2004), and GANESH (Bhatt
et al. 2007). Although they have different characteristics,
all schedulers must follow a general process. This proc-
ess includes the following phases: system selection and
preparation; task submission, monitoring, migration, and
termination (Schopf, 2004). To coexist with any Grid-
scheduling system, the cache system management must
consider the different phases of the scheduling process.
As we described above, the cache system will interact
mainly with the task submission and termination phases.

In our study, we used the GridWay meta-scheduler
(Huedo et al. 2004). This meta scheduler is a service imple-
mented over the Globus middleware. GridWay manages
task execution and brokers resources, allowing unat-
tended, reliable and efficient execution of complex tasks
and collection of tasks on Grid heterogeneous environ-

Fig. 4 Cache database update scheme. The scheduler checks the cache database searching entries (1). With Grid
middleware services, the scheduler asks whether cacheable file f1 can be found in the cache directory in resource
n1 (2). If the answer is positive, then the entry is updated (3). The scheduler asks whether f2 can be found in the
cache directory in n2 (4). If the answer is negative, then the scheduler deletes the entry in the cache database (5). 
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ments. The GridWay daemon (GWD) interacts with differ-
ent Middleware Access Drivers (MADS) to access Grid
services. The GWD is connected with the different MADS
through Managers, which provide the following (see
Figure 6):

• Request Manager: receives task petitions from the user
and introduces them in a task queue. It also allows delet-
ing and holding operations over the tasks.

• Information Manager: recollects information about
available resources in the Grid, using middleware serv-
ices to create a resource queue. It also recollects infor-
mation about the performance of the resource.

• Dispatch Manager: using the queue information, it allo-
cates tasks from the request queue in resources. It uses
resource performance information to make assignations
and eventually increase efficiency. It also migrates tasks
between different resources.

• Transfer Manager: allows file transmission between
resources through middleware services.

• Execution Manager: manages task execution over resour-
ces, checking execution time and performance by inter-
acting with GridFTP, grid resource management system
(GRAM), and local resource management system
(LRMS) services. It also labels tasks as candidates to be
migrated when they are scheduled in resources for too

Fig. 5 Scheme to carry out a task with a remote cache policy. The scheduler in the user’s resource makes a task
petition to the cluster front-end (1). The cluster front-end selects a suitable cluster-worker node, creates a directory,
and transfers the scheduling routine (2). Scheduling routine execution begins by copying the non-cacheable files
from the user (3). If the cache directory does not exist, then it is created (4), otherwise the cacheable files in the
cache directory are linked in the task work directory (5). Cacheable files that cannot be found in the cache directory
are copied from the user to the cache directory and linked in the work directory (6). Finally, the task is launched (7)
and the output files are transferred to the user (8). 
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long. A Wrapper Routine, which is executed over the
resources in a batch environment, provides management
and control of the remote executions. This routine does
all the initial and final adaptations necessary for the cor-
rect execution of a task.

These functionalities allow adapting executions of tasks
over changing Grid conditions, providing failure recov-
ery mechanisms and maintaining transparency for users.

Changes for introducing a cache system in this sched-
uler require modifications to the Request, Transfer, Exe-
cution, and Information managers. GridWay provides
different transfer schemes depending on the storage nature
of the Grid environment. A direct transfer scheme is
established when the Grid resources guarantee shared
storage. In this case, the Transfer Manager interacts with
the GridFTP service to do transfers. When shared storage
is not guaranteed, the transfer scheme is reversed. In this
case, the transfer operations are launched from the clus-
ter-worker nodes by the Wrapper Routine through the
GridFTP service. Depending on the transfer scheme, dif-
ferent cache policies must be implemented, introducing
different changes in the GridWay modules:

• Centralized policy: used with the direct transfer scheme.
Interaction with the centralized cache database requires
modifications in the following:

• Request Manager: the user’s interface is modified to
allow the user to specify cacheable files. In short, a
template file specifies the interaction between the user
and the Request Manager. The user fills up different
fields in this template describing the task to run, spec-
ifying the executable file needed, the input files, and
resource requirements. New template fields have
been included in order to let the user specify whether
the executable file must be kept in the cache and
which input files must be treated as cacheable. Letting
the user determine the cacheable files allows avoiding
useless caching of files that are used in a single task. If
a single task that will never be repeated executes, it is
of no use to cache the executable file attached to the
task, as it will never be needed again. In any case, it is
possible to force cache functionality for all files in use.
The Request Manager, reading the template file,
marks up all the cacheable files appropriately and
computes their MD5 identifiers for future use.

• Transfer Manager: every time the Transfer Manager
receives a request to transfer a set of files to a specific
cluster front-end, it checks whether each files has been
marked up as cacheable. While those that have not
been are directly transferred, for those so marked, the
transfer manager does a database query in order to
determine whether the files have been already set in
the cache directory of the resource. If the answer is

Fig. 6 GridWay architecture and its interaction with Grid services.
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positive, the file transfer operation is cancelled, com-
pleting only when the answer is negative.

• Wrapper Routine: the batch script routine executed
by GridWay in the selected cluster-worker node is
modified to manage the cache directory. It links
both previously cached files needed by the task
and new cacheable files transferred by the Transfer
Manager.

• Execution Manager: after the establishment of new
cacheable files in a cache directory, the local data-
base must be updated with new entries. In order to
keep the database consistent, it is necessary to verify
the correct completion of the cache insertions. This
verification can be obtained only if the task is suc-
cessfully performed. As the Wrapper Routine is exe-
cuted remotely in the cluster-worker node, GridWay
cannot determine the reason for an incorrect execu-
tion of a task. Possible reasons for task failure can be
an error in the access of the cache directory or an
incorrect transfer operation for one of the cacheable
files. In case of task failure, the grid cannot guaran-
tee that these operations have completed correctly
since the cache modifications were compromised.
For these reasons, the Execution Manager only modi-
fies the database when it detects that tasks have final-
ized correctly.

• Information Manager: this manager periodically
carries out the checking operations needed to main-
tain database consistency due to the lack of control
over storage capabilities in remote resources. The
Information Manager triggers these operations in an
appropriately short interval in order to guarantee
consistency when tasks are launched.

• Remote policy: employed with the reverse transfer
scheme. As all of the cache operations rely on the
resources, modifications of the scheduler are slight. In
short, the Request manager must carry out new func-
tions as described for the centralized policy. Contrary
to the centralized policy, all of the cache functionality
resides in the Wrapper Routine. Thus, together with
the linking operations, now the Wrapper Routine com-
municates with the user to transfer input files.

GridWay design follows a “loosely coupled” philosophy,
meaning that its functionality is kept in a user-level layer,
running only in the user’s resource, not introducing
lower-level functionalities and relying on middleware-
level services to operate. This conception of GridWay as
a client tool allows an easy integration of the cache sys-
tem. It is only necessary to modify software for the
scheduler daemon that must be only installed on the
user’s resource. Thus, the introduction of new features
over the Grid environment is not necessary, facilitating
the use of the modified scheduler.

5 FRODOCK: a Grid-adapted High-
throughput Application

The protein–protein docking problem constitutes a major
challenge in the area of computational structural biology
(Deremble and Lavery, 2005; Bonvin, 2006; Ritchie et
al. 2008). The goal of traditional protein–protein docking
algorithms is to take the three-dimensional coordinates of
two proteins that are known to interact, called the ligand
and the receptor, and to derive a model for their complex
structure. Such predictions and their integration with
experimental data can yield new insights into the basic
principles of molecular recognition and the mechanisms
of protein association. Protein–protein algorithms gener-
ally consist of an initial stage during which the unbound
components are combined rigidly. This stage generates
large numbers of potential predictions, which are then
assessed in a second refinement stage. Here we focus on
the first stage, which does a rigid-body orientational sam-
pling of a ligand protein molecule relative to a fixed pro-
tein receptor molecule while maximizing a docking
scoring function. The 6D sampling space of relative ori-
entations between the ligand and the receptor is huge and
hence computationally demanding. To tackle this search
efficiently, many current approaches follow a classical
Fast Fourier Transform (FFT)-based algorithm described
by (Katchalski-Katzir et al. 1992). Although the FFT tech-
niques reduce drastically the time needed to carry out a
docking search, this time can still be very large, depend-
ing on the size of the receptor and ligand components and
on the number of interaction potentials used. A single
docking search in a standard computer can take many
hours or even several days.

Retaining the use of FFT techniques, our new protein–
protein docking application improves efficiency with a
spherical harmonics (SHs) methodology, which has been
successfully used to fit atomic structures into electron
microscopy (EM) density maps (Garzon et al. 2007b),
and which has also been adapted to Grid computation
(Garzon et al. 2007a). The details of this application,
called FRODOCK (Fast ROtational DOCKing), can be
found elsewhere (Garzon et al. 2009). Briefly, FRODOCK
accelerates the rotational part of the search with an effec-
tive expansion in the SHs of the grid potentials. These
potentials are represented by concentric layers of SHs
functions. To complete the full exploration, FRODOCK
samples the translational space around the receptor
uniformly with a fixed step size. FRODOCK uses three
potentials in function scoring: the Van der Waals potential,
electrostatic potential, and desolvation potential (Chen and
Weng 2003).

Although this method reduces drastically the time
needed for the docking search, the use of three different
potentials still implies a hard-computing demand. More-
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over, uniformly translational sampling can eventually
explore more than 105 points, depending on the geometry
and size of the ligand and receptor structures. Since the
rotational exploration in each translational point can be
done independently, FRODOCK can be easily adapted to
parallel execution. Parallel adaptation follows these steps:

• A preliminary phase pre-computes data of both pro-
teins. These data are related to the different potentials.
This phase can run locally on the user’s resource.

• In the parallel phase different tasks are launched through
the Grid system to explore different sets of positions of
the ligand with respect to the receptor. All of the input
files are common to all of the tasks except the set of
translational search positions, which are specific for
each task. The number of tasks launched will define
the granularity of the parallel phase. If few tasks are
launched, each task will do the rotational search for
many translational positions, with a coarse granularity.
If many tasks are launched, each task will search for a
few translational positions, making the granularity more
refined.

• A final phase combines results for all of the tasks over
the user’s resource, selecting the solutions that provide
a higher scoring function.

This parallel strategy can reduce large docking searches
to only a few minutes. Considering that classical FFT
approaches take hours or days to do a docking computa-
tion, this is a clear improvement.

Compared with other alternatives, such as cluster envi-
ronments or multi-processor computers, a Grid is a suita-
ble environment in which to run this parallel docking
application, as it provides access to large amounts of com-
putational resources typically not available in a biology
laboratory. Similar applications already use distributed
resources to accomplish their tasks (Chang et al. 2007).
Finally, all of the parallel FRODOCK tasks require input
files, including pre-computed three-dimensional grid
potential maps, ligand SHs representations, and a list of
ligand translational positions. All of these input files,
except for the list of translational positions, are common
in all of the tasks. The application behaves optimally if
these files are cached efficiently. For this reason, FRO-
DOCK is a perfect candidate for studying the perform-
ance of the cache system.

6 Performance Analysis of the Cache 
System

6.1 Experimental Conditions

To check the efficiency of the cache system adapted to
the GridWay meta scheduler, the FRODOCK application

was launched with and without cache system support.
We have chosen the largest example (hence, the most
computationally demanding test) from a standard pro-
tein–protein benchmark (Mintseris et al. 2005). In this
example, called the 1N2C test, the unbound structures of
the Nitrogenase Mo-Fe and Nitrogenase Fe proteins are
used as input to test whether FRODOCK can correctly
predict their known complex structure. The structures,
that is, the three-dimensional atomic coordinates, have
been retrieved from the Protein Data Bank (http://
www.rcsb.org/) with entry accession identifiers 3MIN
and 2NIP for the unbound components and 1N2C for
the complex structure. The last was only used to cross
validate the predictions obtained. As an illustrative
example, an acceptable complex structure obtained with
FRODOCK is shown in Figure 7. In a standard compu-
ter, the resolution of this case by FRODOCK takes
around 16–17 hours.

To run FRODOCK in the Grid, the following input
files are required:

• Executable application: all of the tasks run the same
executable. This is a cacheable file (3 MB).

• Precalculated Potential grids: information about the
receptor is summarized in four files containing the Van
der Waals potential (11.5 MB), the electrostatic poten-

Fig. 7 The best solution found with FRODOCK in
illustrative test case 1N2C. The surface map repre-
sents the receptor. The tube structure corresponds to
the first good ligand position found. This prediction
has a root mean-squared deviation (RMSD) of 8 Å with
respect to the correct position, which is close enough
for an acceptable solution. This prediction is found
among the 100 first solutions returned by FRODOCK.
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tial (11.5 MB), the desolvation potential (7.4 MB), and
the atom accessible surface area (5.4 MB). All tasks
need these files.

• Spherical harmonic representation of the ligand: the
ligand SHs representation is precomputed in two files.
Both are cacheable as they are needed by all the tasks
(1.2 MB).

• Translational search space: each task receives a collec-
tion of translational positions where the ligand must be
moved. These collections of positions are different for
each task and are not cacheable. The size of these files
varies depending on the number of tasks into which
the application is split. As the number of total tasks
to perform (NT) increases, the number of positions
assigned to each task decreases, and consequently the
files become smaller. For example, if 214,188 is the
number of positions to explore in the 1N2C test, then
the number of points per task ranges from 2,142
when NT = 100 to 612 when NT = 350. Since the task
execution time decreases when NT increases, the NT
variation allows control of the application’s granular-
ity. 

In summary, note that without a cache system, each task
execution requires transferring eight input files to the
resources, while with it, only the transfer of one file (col-
lection of points) will be necessary in the most favorable
case. 

The Grid infrastructure used for the experiments corre-
sponds to the BIOMED virtual organization of the EGEE
project (http://www.eu-egee.org). As a testbed, we selected
nine sites or resources distributed through different Euro-

pean countries. To prevent resource saturation, the number
of tasks concurrently executed in each resource is limited
to 10. Thus, no more than 90 tasks can be executed con-
currently. The scheduler was configured with default val-
ues to concurrently launch 15 tasks in periods of 30
seconds. At any rate, if the launching ratio is kept fast
enough, then modifications of these parameters slightly
affect the performance obtained by the cache system.
Finally, since some of the resources in the EGEE infra-
structure have no shared secondary storage, GridWay
interacts with such an infrastructure using a reverse
transfer scheme. In this case, it is mandatory to establish
the remote policy in the cache system. In order to provide
resources to test the centralized policy, we have also used
a local resource. The EGEE and local resources are
detailed in Table 1.

6.2 Cache Performance Analysis

The main advantage of our cache system is that it reduces
transfer times during parallel task execution. To analyze
the effect of the cache on transfer time, we have carried
out several experiments over single resources. To this
end, we ran the docking application test over a single
resource, varying its granularity by splitting the search
into a different number of parallel tasks (NT = 100, 200,
and 300). Granularity changes affect both the task trans-
fer time and the execution time and hence affect their rela-
tive weight over the overall execution time. Since we must
also analyze resource characteristics and cache policy, we
repeated the experiments in three different scenarios. We
ran the experiments over a resource with shared storage

Table 1
Characteristics of EGEE and Local Grid Resources.

Hosts Domain SO Arch. Mhz Nodes DRMS Location
Shared 
storage

ce2 .egee.cesga.es ScientificSLBer i686 3000 112 lcgsge Spain No

Ce .gina.sara.nl ScientificSLBer i686 2670 792 pbs The 
Netherlands

Yes

clrlcgce03 .in2p3.fr ScientificSLBer i686 3200 240 lcgpbs France No

cox01 .grid.metu.edu.tr ScientificSLBer i686 1600 248 lcgpbs Turkey No

iut03auvergridce01 .univ.bpclermont.fr ScientificSLBer i686 3600 144 lcgpbs France No

paugrid1 .pamukkale ScientificSLBer i686 1600 44 lcgpbs Polony No

polgrid1 .in2p3.fr ScientificSLBer i686 2200 370 lcgpbs France No

trekker .nikhef.nl CentOSFinal i686 2000 1150 pbs The 
Netherlands

Yes

lcg38 .sinp.msu.ru ScientificSLSL i686 2700 104 lcgpbs Rumany No

aquila local Linux i686 1995 4 pbs Local Yes
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(ce) and without shared storage (paugrid1). As mentioned
before, GridWay establishes a reverse transfer scheme
with the EGEE resources, avoiding the centralized cache.
To test this policy, we have also repeated the experiments
over a local resource (aquila).

To characterize the cache efficiency, we calculate the
total time spent transferring input files with no cache
support by:

Tnocache = nt(tnc + tc), (1)

where nt is the number of tasks performed (nt = NT when
only one resource is available), tc is the transfer time of
the cacheable input data (seven files for the FRODOCK
application) and tnc is the transfer time for the non-cache-
able input data (one file). When cache support is availa-
ble, the transfer time is now calculated by: 

Tcache = nt · tnc + nf · tc, (2)

where nf is the number of tasks that failed to find their
required cacheable files in the cache directory. Taking
into account that in the best case the cacheable files will
be transferred only once, the lower bound on transfer
time can be defined as:

Tmin = nt · tnc + tc. (3)

Using these equations, the transfer efficiency can be
defined as the cache reduction rate of the transfer time:

Ecache = , (4)

Emax = . (5)

The transfer efficiency ranges from 0 when there is no
reduction to values close to 1 when a high reduction is
obtained. Emax characterizes the maximum efficiency that
can be obtained.

To calculate the cache transfer efficiency, in the exper-
iments with cache available, tnc is taken from the average
time needed by all of the tasks and the tc value is the sum
of the average times to transfer all the cacheable files.
The addition of both values corresponds to the total
transfer time per task when no file is found in the cache.
Instead of using the total number of missed cacheable
files, we estimate a more realistic nf value to provide a
size-weighted measure of the missed data. Because of
this, the miss of a large file will increase nf more than the
miss of a small one. In the case of experiments with
cache, we obtain the total transfer time per task directly
from the average time for transferring all of the tasks.
The final parameters obtained in the three scenarios are
listed in Table 2.

Figure 8 shows the high efficiencies obtained in all of
the resources. In the case of ce, the maximum expected
efficiency is attained for all of the NT values. This maxi-
mum efficiency can be explained by the existence of a
shared secondary storage. This allows access to the
cacheable data after a single transfer operation to all of
the cluster-worker nodes. However, the nf values for ce
are slightly larger than 1, indicating that few files are
transferred at least twice. The concurrent launching of
tasks can explain this observation. As tasks are launched
in groups of 15, some tasks will start the transfer opera-
tion at the same time for some files, increasing the nf val-

1
nt tnc⋅ nf tc⋅+

nt tnc tc+( )
---------------------------------–

1
nt tnc⋅ tc+
nt tnc tc+( )
-------------------------–

Fig. 8 Transfer efficiency obtained with the cache over different resources. Experiments over ce and paugrid1 use
remote cache policy; centralized policy is used over aquila.
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ues. At any rate, this transfer concurrency does not have
a sensible effect on transfer efficiency. On the contrary,
the expected efficiency is not reached in aquila, where nf
ranges between 3 and 4. The higher values of nf and tnc
produce a sharper reduction in the efficiency. The high
values of nf are a consequence of the centralized policy.
In this policy, the database update is delayed until tasks
end, enabling more transfer concurrency events. In the
case of paugrid1, nf values also affect the transfer effi-
ciency, preventing the attainment of maximum effi-
ciency. However, the obtained efficiencies are very high
(over 0.95) provided that no common secondary storage
is available for all of the cluster-worker nodes. We can
conclude that although no shared storage exists for all of
the nodes, they must be grouped, forming several clusters
where storage is shared. In addition, the same nodes must

be repeatedly selected for executing many tasks. Together,
these two reasons explain how only a few full transfer
operations are needed. In any case, the improvement in
transfer efficiency resulting from maintaining shared
storage in resources with the cache system is evident.

We would expect efficiency to increase when granu-
larity increases (that is, when NT is augmented). As the
number of tasks increases, the number of translational
positions to explore per task decreases, and the corre-
sponding non-cacheable files (sets of positions per task)
are smaller. This reduction of non-cacheable data modi-
fies the balance in total transfer time per tasks. The tnc
reduction increases the tc contribution. Consequently,
avoiding transfer operations of cacheable information by
means of the cache system will reduce total transfer time
more and hence increase efficiency. However, due to the

Table 2
Experimental Data Obtained for the 1N2C Docking Application in Different Resources and with 
Different NT. Resources Indicates the Grid Resource Used in the Experiment; NT the Number of 
Parallelized Tasks; Cache Indicates whether Cache Support is Available; Tc And Tnc are the Average 
Transfer Times to Transfer Cacheable Data and Non-cacheable Data (Only for Experiments with 
Cache); Ttransfer is the Average Transfer Time Necessary to Copy all of the Input Data for One 
Task, This Value is Computed by Adding Tc And Tnc for Experiments with the Cache; Total Transfer 
Time is the Total Time to Transfer Operations for all of the Tasks; nf is the Average Size-weighted 
Number of Files Missed in the Cache (only for Experiments with Cache); Total Exec. Time is the 
Total Time to Execute all of the Tasks.

Resources NT Cache Tc Tnc Ttransfer
Total

Transfer Time
nf

Total
Exec. Time

Ce 100 Yes 17.30 0.30 17.6 48 1.04 44733

Ce 100 No – – 21.9 2196 – 45181

paugrid1 100 Yes 64.40 1.00 65.4 321 3.43 71529

paugrid1 100 No – – 65.1 6511 – 69212

aquila 100 Yes 29.80 2.56 31.6 376 3.89 58565

aquila 100 No – – 16.0 1603 – 58681

Ce 200 Yes 17.40 0,20 17.6 58 1.04 44611

Ce 200 No – – 22.3 4481 – 45171

paugrid1 200 Yes 64.80 0.80 65.6 479 4.92 70530

paugrid1 200 No – – 73.2 14654 – 70339

aquila 200 Yes 31.50 2.75 34.2 660 3.49 58810

aquila 200 No – – 16.6 3334 – 58798

Ce 300 Yes 17.20 0.30 17.5 109 1.10 45422

Ce 300 No – – 21.4 6462 – 45437

paugrid1 300 Yes 64.70 0.70 65.4 435 3.48 74024

paugrid1 300 No – – 69.7 20889 – 69871

aquila 300 Yes 31.50 3.25 34.7 1093 3.74 58885

aquila 300 No – – 1.5 4658 – 58928



16 COMPUTING APPLICATIONS

small size of the set of translations, its variation has a
slight effect on the maximum expected efficiency. In the
case of ce, where tnc is very small, the efficiency variations
could be explained by dynamic changes in the transfer
Grid conditions. In paugrid1 and aquila, the granularity
reduction increases efficiency due to larger tnc values. In
these resources, the difference between the obtained and
maximum expected efficiency is reduced as NT increases.
Because nf remains almost constant despite the increase
in the number of tasks, the cache-miss ratio decreases
inversely with the success ratio. In the extreme case, if an
infinite number of tasks are performed, the obtained effi-
ciency would equal the maximum expected efficiency.
Since the granularity reduction implies more tasks to per-
form, the total number of transfer operations necessary to
realize the full experiment increases when no cache sup-
port is available. On the contrary, when the cache system
is used, there is no increase. Figure 9 makes this clear,
where the operational time for each experiment is com-
puted as the combination of transfer time and execution
time for all the tasks. When the cache system is in use,
the total transfer time is not significant compared to the
execution time. Thus, the cache system provides a reduc-
tion of the total operational time that, in paugrid where tc
is very high, reaches around 20% for NT = 300. This rate
will increase as granularity decreases (as NT increases).
Because of this, when the cache system is available, we
can study the granularity for an application’s execution
in a Grid system without considering transfer overloads
when this granularity is finer. Determining efficient appli-
cation granularity can be difficult due to the necessity of a
suitable balance between concurrent execution degree,

resource saturation, and transfer time overload. There-
fore, removing one of these factors will permit an easier
determination of the optimal granularity.

Finally, we observe no significant difference between
centralized and local policies’ behaviors, as the variation
in performance relies mainly on resource characteristics.
The only important difference, as mentioned above, relies
on a slight increase in nf in the centralized policy due to a
wider time window in transfer concurrency. However,
for large numbers of parallel tasks, this increase will not
be perceptible in the final efficiency.

6.3 Application Performance Analysis

To analyze the effect of the cache system on the FRO-
DOCK’s overall execution in experimental conditions,
we have used all nine EGEE resources specified in
Table 1 to solve the 1N2C problem with a remote cache
policy.

We have checked different granularity degrees by var-
ying the number of tasks (NT = 100, 150, 200, 250, 300,
and 350). We repeated each experiment five times to
avoid the effects produced by variations in behavior in
the Grid resources. We did the experiments with and
without cache support. The executions with and without
the cache have been interspersed to reduce the effect of
temporal variations in the Grid resources. The average
total time needed for all of the parallel tasks with and with-
out the cache as a function of NT is shown in Figure 10.
One can observe that, except for NT = 100 where the per-
formances are comparable, the executions with cache
support are faster. The comparable times in NT = 100 are

Fig. 9 Operational time (transfer + executions) for all of the tasks carried out in each experiment. Percentage values
indicate the transfer rate in the operational time. The tasks’ pending time for execution is not considered in opera-
tional time. 
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a consequence of the low number of tasks, which does
not permit getting enough benefit from the cache facili-
ties. Moreover, with NT = 100, the task’s computational
weight is higher and the transfer time rate over the full
task’s lifetime is reduced. NT = 200 has the best relative
cache performance, corresponding to the optimal granu-
larity degree for both the EGEE infrastructure and the
cache system used. The values of NT over 350 are not
expected to reduce execution time as they will heavily
saturate the Grid environment. Therefore, we will focus
the performance analysis on tests with the optimal value
of NT = 200.

Figure 11 shows the average experimental perform-
ance obtained with NT = 200 with and without cache
support. The experimental performance is defined as the
number of tasks completed per second and gives a measure
of the productivity of a Grid system. As it can be seen, with
cache support, all 200 tasks run with an experimental per-
formance of 0.103 tasks per second, whereas without
cache, performance decreases to 0.087 tasks per second.
These values show the better behavior of the cache sup-
ported system, as it finishes 15.53% more tasks in the
same period of time. Table 3 shows the average experi-
mental gain provided by the cache system for different
granularity degrees. As expected, we improve perform-
ance for all NT except NT = 100.

Figure 12 shows average times for staging-in (input
files transfer) and execution for all of the tasks correctly
executed on different resources, depending on cache sup-
port. While the execution does not differ significantly
from the times obtained without cache support, the stag-
ing-in time is reduced in the resources when the cache
system is available. This reduction is provided by cache
access to input files for some of the tasks. This fact limits
the number of transfer operations needed for the tasks.
As the transfer operations are reduced, the average stag-

Fig. 10 Average and standard deviation of total times needed in the Grid environment to solve the 1N2C problem.
The X axis shows the number of tasks (NT) used to parallelize the full execution. The dashed line corresponds to
non-cache support executions, while the solid line corresponds to cache support executions.

Table 3
Comparative Performance Obtained for 
Different NT.

NT
Cache 

performance
Non-cache 

performance
% 

gain

100 0.0431 0.0439 –2

150 0.0658 0.0586 10.95

200 0.1034 0.0874 15.53

250 0.0933 0.0889 4.626

300 0.1229 0.1134 7.726

350 0.1492 0.1266 15.10
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Fig. 11 Average experimental performance (completed tasks per second) with (solid line) and without (dashed line)
cache when application is parallelized into 200 tasks (NT = 200). Error bars show standard deviation.

Fig. 12 Average times for staging-in file (left) and executing (right) tasks in each resource with NT = 200 and with
(grey columns) and without (black columns) the cache system.
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ing-in process is exposed less to the variation in the Grid
transfer latencies derived both from differences between
resources’ behavior and from changing dynamic condi-
tions. Consequently, the variation in the staging-in proc-
ess between resources is lower with cache support (32.7
of standard deviation) than without (59.0 of standard
deviation).

The homogenization of the staging-in process has a
direct effect on overall task performance on different
resources. Figure 13 shows that with cache support, the
task load (executed tasks in each resource) is slightly
more balanced (79.7 of standard deviation) than with
no cache support (83.7). Homogeneity increases because
fewer productive resources (trekker, clrlcgce03) do more
tasks and there are fewer tasks waiting for execution
over the most productive resources (ce). As a conse-
quence, the task production variation between low-produc-
tion resources and high-production resources decreases.
The use of the cache system allows better exploitation
of the Grid capabilities for high-throughput applica-
tions, as the parallel tasks are better distributed over the
resources.

Finally, Figure 14 shows both the maximum expected
and the obtained transfer efficiency (Equations (5) and
(4)) provided by the cache system in all resources. As it
can be observed, the maximum expected efficiency varies
from the different resources. There are two issues affecting
maximum efficiency: Input/Output (I/O) performance and
the number of tasks executed by the resource. Resource I/O
performance reflects how fast data are transferred to or
from the resource. Avoiding transfer operations will
increase transfer efficiency more when I/O performance
is slow. Similarly, the cache miss rate will decrease
when the number of tasks processed by a given resource
increases. Although all of the resources except lcg38
present efficiencies over 50%, the real transfer efficien-
cies are far from the maximum due to cache misses. The
lost efficiency rate depends on the proportion of cache
misses produced for all of the tasks executed in the
resource. If a resource usually selects cluster-worker nodes
that have already processed tasks, there will be few cache
misses, and the efficiency will be slightly affected.
Resources where shared secondary storage exists (such as
ce and trekker) will have a very low cache miss rate.

Fig. 13 Total number of executed tasks in each resource for the five experiments with (grey column) and without
(black column) the cache system for NT = 200.
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7 Conclusions and Future Work

We have presented a new cache system to improve the
performance of high-throughput applications that access
shared data repeatedly. Unlike other approximations to
provide cache facilities in Grid computing, the end-to-
end cache system does not need a hard intrusive modifi-
cation of the Grid environment since it works over the
scheduler functionality layer. To implement our cache
system, only the scheduler service needs to be modified.
Scheduler functionalities can maintain cache directories
over the cluster-worker nodes. Cacheable files are stored
in these directories when they are transferred from the
user and future requests of the files are redirected to the
cache directories. The cache system has been designed
with two different policies for adapting its functionality
to different Grid scenarios and transfer schemes. While
the remote policy can be used both with common and
independent secondary storage in the nodes of a resource,
the centralized policy is only adequate when common
secondary storage in the Grid resources is available.
Although the first policy is more general, the latter pro-
vides information about the cache availability of the files

in the environment. The scheduler could use this infor-
mation to improve its task scheduling.

The cache system has been adapted over the GridWay
meta scheduler. In order to test its efficiency, we have
used a bioinformatic application called FRODOCK,
which carries out protein–protein docking. We have car-
ried out experiments on resources with different charac-
teristics to measure the effect of the cache on transfer time.
Common shared storage in resources allows for efficien-
cies close to the maximum expected. Moreover, the maxi-
mum expected efficiency depends on the resource I/O
performance. When a resource has a low I/O perform-
ance, the expected efficiency will be higher, and the
transfer time reduction will be more significant. In addi-
tion, increasing the number of tasks running on a resource
decreases the probability of cache misses and hence
increases the transfer efficiency. Therefore, the cache
system eliminates communication overload produced for
fine application granularities. Consequently, to consider
the granularity degree for a given application, only con-
currency and saturation over the Grid resources must be
studied. Finally, the performance of both cache policies
(centralized and remote) has proven to be very similar;

Fig. 14 Maximum expected and obtained transfer efficiencies for each host with NT = 200.
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performance variations are affected much more by the
resources’ characteristics.

To measure the effect on overall application execution
time in real conditions, we ran the application over a het-
erogeneous Grid environment using the remote policy
cache system. The results with the cache system show
better performance, with a maximum of 15% reduction in
the execution time. The transfer time was also reduced
below 50% in the majority of resources. Moreover, the
Grid resources behave more homogeneously when the
cache functionality is set. These results are very represent-
ative of the improvement provided by the cache system.
The cache system has also been tested with other applica-
tions. This includes a three-dimensional multiresolution
fitting bioinformatic application (Garzon et al. 2007b) and
a standard Grid Benchmark (Frumkin and Van der Wijn-
gaart, 2002) that has been artificially adapted to require
input data. In both cases similar performance has been
achieved (10–15%). 

The cache system has been designed from a user’s per-
spective and works only with information provided by
one single user. Since we have focused our work on high-
throughput applications with a high degree of data reusa-
bility, we have not considered the case of data shared
between different users. In future work, we will study
alternatives for data management in the cache, mainly
oriented to the data deletion mechanism after the applica-
tion executions. Finally, the information maintained by
the centralized policy can be of great value for the sched-
uler when assigning tasks to resources. The scheduler can
make better assignments by using this dynamic informa-
tion, improving performance significantly. Thus, future
work will focus on task scheduling improvements pro-
vided by the centralized policy.
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