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1. INTRODUCTION 
Single particle electron microscopy (EM) has become 
the most powerful technique in structural biology for 
studying large macromolecules and their assemblies. At 
near physiological conditions, the 3D structure of 
relevant biological complexes can be determined from  
sub-nanometer to even near atomic resolution (Frank, 
2006). Using a small amount of purified sample, 
researchers process and average the collected 2D EM 
data into a 3D reconstruction. In the first step, numerous 
single molecule images are obtained from multiple EM 
measures. These images correspond to electronic 
density 2D projections of the molecule in different 
random orientations. Because such projections are 
extremely noisy images, they are aligned and classified 
by similarity to reduce the signal-to-noise ratio (SNR). 
In fact, single particle 3D reconstruction is an iterative 
alignment and classification procedure, where strong 
image averages produced by classification are used as 
reference images for the subsequent refinement steps. 
Therefore, the alignment, which ultimately determines 
the 3D reconstruction quality, is repeated multiple 
times. Such alignment typically maximizes a cross-
correlation function (simple scalar product of the EM 
electron density values stored in the 2D images) 
between experimental noisy images and the reference 
images. Moreover, the computation time for 3D 
reconstruction increases with the number of images, 
becoming a bottleneck for high-resolution studies. 
Approximately 106 image projections are needed to 
target high-resolution. In this context, the complete 
process can take even days in a multiprocessor cluster. 
In summary, the alignment is a critical step that largely 

controls the efficiency and accuracy of the 3D EM 
reconstruction.  
 Current EM image processing packages use 
different alignment kernels to perform 2D registration 
efficiently, as described elsewhere (Joyeux and 
Penczek, 2002). The most popular approaches are the 
self-correlation method (SCF) and the resampling to 
polar coordinates (RPC) method. The latter resamples a 
fixed image into polar coordinate space with respect to 
several locations of the other image. By means of the 
Fourier convolution theorem, the rotational angle 
between projections is determined from a 1D fast 
Fourier Transform (FFT), whereas the two translational 
parameters (i.e., x and y shifts) are discretely scanned. 
In contrast, SCF is a Fourier method that decouples 
rotation and translation. The rotational angle is 
computed in the same way as in the RPC method, but 
using a mutual-correlation function instead the standard 
density cross-correlation. The translational parameters 
are obtained by a 2D FFT that greatly speeds up the 
alignment. Although SCF is much more efficient than 
RPC, it is less robust against noise (Cong et al., 2003; 
Joyeux and Penczek, 2002). To improve its accuracy, 
researchers have added a post local refinement step. 
This SCF plus refined protocol is the standard fastest 
alignment procedure. Alternatively, the fast rotational 
matching method (FRM2D) maintains the accuracy of 
RPC and is still competitive (2x slower) with SCF 
(Cong et al., 2003; Cong et al., 2005). In FRM2D, the 
alignment problem was recast into one translational and 
two rotational degrees of freedom. Instead of fixing one 
image while rotating and translating the other, both 
images are rotated and one of them is translated along 
the axis formed between the images centers. This 
method accelerates the estimation of the two rotations 
by FFTs, while the remaining translational parameter is 
systematically explored (Cong et al., 2003; Cong et al., 
2005). FRM2D has been implemented in the standard 
package EMAN and has been successfully used in 
challenging high-resolution 3D reconstructions (Cong et 
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al., 2010). This method can also be considered as a 2D 
version of the 3D fast rotational matching procedure 
that we employed to predict protein interactions 
(Garzon et al., 2009) and to fit atomic structures into 
low-resolution EM density maps (Garzon et al., 2007).  

 More recently, Kovacs and collaborators (Kovacs 
et al., 2007) have outlined a new real-space correlation-
based method to perform the 2D alignment step, known 
as the Fast Bessel Matching (FBM) method. In FBM, 
the matching problem is recast into three angular 
parameters that can be estimated by a single 3D Fourier 
transform. To speed up all the rotational degrees of 
freedom, the correlation function was expressed in 
terms of the Fourier-Bessel transform of the image 
projections. Theoretical estimates from FBM showed a 
much lower complexity than current alignment 2D 
algorithms (Kovacs et al., 2007). These results 
suggested FBM as the optimal real-space method for 
matching EM noisy images. However, this hypothesis 
has not yet been confirmed.  
 In this article, we present the first FBM 
implementation and its adaptation to High-Performance 
Computing (HPC) systems. The parallelization can be 
performed directly by farming the graphics processing 
unit (GPU) processors with different alignments. The 
main advantage is its relative low storage needs and its 
simplicity when implemented on the GPU. Next, we 
summarize the methodology employed. Then, we 
confirm its robustness and accuracy. Finally, we 
describe and test the GPU implementation.  
   

 
2. METHODS 
The 2D image alignment in single particle analysis 
should be considered as a template matching problem. 
The templates are either average images obtained using 
clustering or generated as 2D projections from 3D 
reference structure. The experimental EM projections 
are compared with the template images to find most 
similar alignment parameters. Although these 
registration parameters are typically defined by two 
translations and one rotation between a fixed and a 
moving image, here registration is defined by the three 

angles as depicted in Figure 1. With this set up, FBM 
allows the direct estimation of all cross-correlation 
values between two images as a function of the rotation 
angles ξ, ω and η. We provide a brief summary of FBM, 
which has been described in detail elsewhere (Kovacs et 
al., 2007). First, the template image Fourier-Bessel 
transform can be written as:  

      
0

ˆ
m m mF x f uxu J udu


   (1)

where  ˆ
mf u corresponds to the Fourier transform of a 

given image f sampled in polar coordinates, with u 
being the fixed radius. The term Jm(ux) corresponds to a 
Bessel function of the first kind with order m. The 
Fourier-Bessel transforms Gm(x) of the other image to 
be matched is obtained as in Eq. (1). Note that both 
Fourier-Bessel transforms are computed using 2B 
angular samples, and only for |m|≤ B, where B is the 
bandwidth. To compute the correlations with respect to 
the three angular variables, we can use:  
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where ϵ is a shift angle added to η to avoid duplicated 
values in the solutions. In our implementation ϵ was 
fixed to π/(2k). Applying the following variable change 
in Eq. (2), we obtain:  
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This equation yields a correlation  , ,C     , whose 

Fourier transform is: 
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By taking the inverse Fourier Transform of this 
equation, we can compute directly the matching 
correlation values for all angular triplets. In other 
words, we can recover the best matching angle solutions 
by simply find maximal values from the correlation 3D 
matrix. Efficiency has been achieved for two reasons: i) 
all of the registration procedures are reduced to a single 
inverse FFT and ii) the integral Eq. (4) involved simple 
operations between pre-calculated terms. In fact, all 
image Fourier-Bessel transforms are calculated at once, 
as are the Bessel functions. FBM was implemented in 
both CPU and GPU following this simple pseudo-code: 
 
Precompute all image Fourier-Bessel transforms. 
For each EXP image{ 
 Load EXP image 
 For each REF image{ 
  Load REF image 
  Calculate correlation REF / EXP 
  Search best correlations 
  Store the corresponding angles 
 } 
 Search best matching for this EXP 
 Store best matching 
} 

 
Figure 1.  Matching setup of FBM method. The image on the left 
side is fixed, and the image on the right is moved by the rotations 
of ξ, η and ω to match the image on the left. b is a fixed value. In 
our implementation, b was fixed to 3.5 pixels.  
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2.1. CUDA Implementation 
The graphical device FBM procedure was performed in 
three steps: i) compute the integral of Eq. (4) ii) 
compute the inverse Fourier Transform iii) search the 
highest correlation and store its alignment values. To 
compute the 3D FFT, we employed NVIDIA’s cuFFT 
library. In particular, we obtained the best performance 
employing cufftPlanMany interface with the native 
compatibility configuration. However, this 
configuration needs an extra temporary correlation 
matrix, doubling the memory required. Thus, the FFTs 
number and hence the 2D alignments computed in batch 
are limited by the available GPU memory. For example, 
in a GTX 470 card we were only able to process 
packages of 9280, 1120, and 320 FFTs, for bandwidths 
64, 128 and 192, respectively. Note that bandwidths are 

multiple of 32 in agreement with NVIDIA’s 
architecture guidelines.  Constrained by FFT memory 
needs and by the bandwidth, we have designed two 
kernels: one to compute the integrals and other one to 
find the best matching results. The overall grid layout 
integral kernel is schematized in Figure 2.  At the 
hierarchy top level, a grid is organized as a 2D array. 
The number of reference and experimental images 
computed in batch determined the dimensions of such 
2D computational grid.  At low level, the threads are 
organized in bandwidth size blocks to compute a single 

row of a given 3D matrix integral. Once the kernel has 
computed all the integrals, the inverse Fourier 
transforms are calculated by means of cuFFT.  The 
resulting matrices containing all the correlation values 
are subsequently searched to find the highest match 
scores.  The search is a quite serial process and a non-
optimal task for the graphical device since correlation 
matrix transference to RAM is prohibitive. For the 
search kernel, each GPU block is devoted to process a 
single experimental image against all the references. 
Every thread in the block searches on its corresponding 
correlation matrix for the angular triplet (ξ, η and ω) 
with the highest value. This kernel ends transferring to 
the RAM the best reference registration and its 
parameters. After all the experimental images are 
processed, finally, on CPU the best matches are selected 
and stored. For this particular implementation, most of 
the computing time is spent the integral kernel (~75%) 
whereas FFT and correlation search consumed the 
remaining 10% and 15%, respectively.  
2.2. Benchmark 
To conduct the validation and comparison tests, we 
generated a matching benchmark from 2D projections 
of RNA polymerase II. This important macromolecule, 
which catalyzes the DNA transcription, has been 
characterized by EM in several conformational states 
(see, for example, Opalka et al., 2003). The simulated 
data have been obtained from the atomic structure 
(Protein Data Bank ID: 3M3Y) by using the single 
particle analysis software Xmipp (Marabini et al., 1996; 
Scheres et al., 2008). First, the electron density 3D 
atomic structure is projected into a 128 x 128 x 128 
voxel density map with a 1.5 Å/voxel sampling rate by 
using the convert_pdb command. Then, a Gaussian low-
pass filter was applied to simulate a 15 Å resolution 

map (fourier_filter command). From this simulated 
map, 80 random 2D projections of 128 x 128 pixels 
were created. Each projection corresponds to a given 
molecule orientation and, in principle, conforms to a 
different 2D shape (see Figure 3). To mimic real EM 
data, we also have simulated the microscope effect on 
these ideal projections using Xmipp phantom_simulate 
_microscope tool. This tool allowed us to add the 
contrast transfer function (CTF), such as defocus, 

 
Figure 3. RNA polymerase EM map (grey surface) and some 
illustrative template projections (2D images).  

 
 

Figure 2. Grid layout of the main GPU kernel that computes the 
integral of Eq. (4). See details on the text.   
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astigmatism and lens aberration, and to simulate real 
noise with a given signal-to-noise ratio (SNR).  

Fifty different particle orientations were obtained 
by applying random rotations and translations to each 
reference image for generating a benchmark stack of 
4000 image projections. The rotation shift was fixed to 
any angle between 0 and 360 degrees and, the 
translational shift was limited below 7 pixels. To 
simulate real data we also included noise to the images. 
We employed 19 different noise levels ranging from 0.5 
to 0.001 of SNR, defined as 2 2

noissi l egnas s . Figure 4 

illustrates the noise effect over the benchmark images. 
As can be observed, the macromolecule shape is only 
perceived at high SNR values. After applying all noise 
levels to every randomly oriented images, we had a total 
of 76000 experimental-like 2D projections. 
 The matching test will consist in recovering the 
original references of the whole experimental set by 
aligning them to the reference/template images. In 
principle, the highest cross-correlation values will 
correspond to the correct matches. The matching 
accuracy was measured by: 

 2 2
( 2sin ) x yd f +D D +D  (5) 

where d is the particle diameter in pixels, Δφ is the 
relative angle misalignment, and x and y are the 
translational parameters (Joyeux and Penczek, 2002). 
The first term corresponds to the radial error, and the 
second corresponds to the translational error between 
reference and aligned images. 
 
2.3. Technical details 
These tests were conducted on a machine with an Intel 
i7 950 for the CPU and two NVIDIA GeForce GPUs, a 
GTX 470 and a GTX 680. The GTX 470 is a Fermi 
architecture card that has 448 cores along 14 
multiprocessors, running at 1.22 GHz, and 1280 MB of 
RAM. The GTX 680 card has the latest Kepler 
architecture. It has 1536 cores along 8 multiprocessors 
running at a speed of 1.06 GHz and 2 GB of RAM 

available. To execute the FBM algorithm on the 
graphical device, we used CUDA 5.0 and NVIDIA 
driver version 302.59. The employ of the latest version 
of CUDA was mandatory to exploit the GTX 680 card 
capabilities.  
 
3. RESULTS 
 
3.1. CPU implementation 
Because FBM has been never implemented, we first 
check its performance in a single CPU. To this end, we 
performed the matching test of the 4000 images against 
the 80 reference ones (see Methods) at three different 
bandwidths: 64, 128 and 192. These bandwidths 
correspond to an angular sampling of 2.8, 1.4 and 0.94 
degrees, respectively. We also conducted the test at 
different noise levels to mimic the experimental 
conditions and test the method. The accuracy results of 
all 76000 matching experiments and their corresponding 
averages are shown in Figure 5. As it can be seen, the 
FBM method maintained subpixel accuracy (solid 

lines), even for SNR values close to 0.01. Around this 
region, alignments started to fail, and from this point, 
the error shown a fast accuracy loss. As expected, the 
accuracy improves as the angular sampling decreases 
(Figure 5). However, the differences between the 128 
(green line) and 192 (blue line) bandwidths were not 
quite significant. The timing results are summarized in 
Table 1.  FBM took less than 4 minutes with a 
bandwidth of 64 to match the 80 templates against 4000 
experimental like images and less than an hour for 128. 
At the highest bandwidth FBM almost 5 hours were 
used to match the whole stack.  

 
Table 1. Execution time in seconds for matching a stack of 
4000 experimental test images against 80 reference images. 

 CPU FBM-GPU 
Bandwidth FRM2D FBM GTX 470 GTX 680 

64 2720 238 13.4 8.88 
128 11293 3122 185 76 
192 23939 16006 1014 443 

 

 
Figure 4. Illustrative examples of noise levels added to the 
random projections  

 Figure 5. Average pixel error for FBM (solid lines) and FRM 
(dashed lines) for bandwidths 64 (red), 128 (green) and 192 (blue).   

SNR
0.001 0.01 0.1 1

E
rr

or
 (

pi
xe

ls
)

1

10

100

FBM - 64
FBM - 128
FBM - 192
FRM2D - 64
FRM2D - 128
FRM2D - 192



 
Proceedings of the International Conference on Modeling and Applied Simulation, 2012 

ISBN 978-88-97999-02-7; Affenzeller, Bruzzone, De Felice, Del Rio, Frydman, Massei, Merkuryev, Eds.  216 
 

 For comparative purposes, we repeated the 
validation with FRM2D alignment method. This 
method exhibits better accuracy than the fastest SCF 
protocol at relatively low SNR ranges while keeps a 
good performance (Cong et al., 2005). We went a step 
further and, as suggested by Kovacs et al. (Kovacs et 
al., 2007), we optimized the FRM2D algorithm by 
reducing the bandwidth of an angular variable (Cong et 
al., 2003). This improvements result in a speed-up of 
one order of magnitude equaling the SCF performance. 
Therefore, in terms accuracy and efficiency, our 
FRM2D implementation is likely the best current 
reference method. In our tests, FBM clearly surpasses 
the accuracy of our optimized FRM2D version 
throughout the whole noise range (Figure 5). Even the 
FBM (solid lines) with the crudest sampling (64) is 
significantly more accurate than the FRM2D using 
thinner samplings (dashed lines) with SNR below 0.1. 
For example, at 128 the FBM error curve is always 
below that of FRM2D. The over-performance is more 
evident at the somewhat lower SNR levels. For 
example, at 0.01 of SNR, FBM matches with an error 
around 1 pixel, whereas FRM2D misses many 
alignments with an error larger than 3 pixels. From this 
SNR and under, the error recorded for both methods 
increases drastically, until both methods reach the 
maximum average error of 57 pixels at an SNR of 
0.001. Fortunately, the typical EM experimental SNR 
ranges from 0.01 to 0.1.  
 The timing results are summarized in Table 1. For 
FRM2D, 45 minutes or up to 3 hours are needed for 
bandwidths of 64 and 128, respectively. On CPU, FBM 
provides speedups ranging from 1.5 to 11 times greater 
than FRM2D in the same conditions. These values are 
slightly better than the theoretical expectations, which 
estimated speedup gains around 2-5 fold (Kovacs et al., 
2007).  In summary, the obtained results confirm the 
superior accuracy and efficiency of FBM relative to the 
optimized FRM2D and by extension to current state of 
the art 2D alignment methods. 
 
3.2. GPU implementation 
Once the FBM was tested and its over-performance was 
demonstrated, we proceeded to implement a parallel 
version on the GPU by using CUDA. Parallelization 
was straightforward because the alignments of each 
reference image are independent tasks (see Method 
section for a detailed description).  
 To match each 4000 image stack, the CUDA 
version using GTX470 took 13.4 seconds, 3 minutes, or 
17 minutes for bandwidths 64, 128 or 192, respectively. 
The executing times were between 66% and 40% 
smaller with newer and faster GTX 680 card. Thus, 
depending on the graphic device our CUDA 
implementation provides maximal speedups from 41x to 
148x relative to the FBM-CPU version (Table 2). The 
speedup is not linear with the bandwidth. In the case of 
GTX 680 at 64, the card resources are not completely 
used and the speedup was limited to 27 fold. At 
bandwidth 192 the speedup decreases in both GPU 

cards. In this situation, the algorithm is likely to be 
saturating the device resources reducing the overall 
efficiency. However, in practical situations, angular 
samplings below 1º are not used because such accuracy 
is hardly achieved with noisy images.  In summary, 
compared to the CPU, the GPU-FBM provides excellent 
performance. For example, it only took less than 10 
minutes to match the whole 76.000 experimental image 
set, including all tested noise levels, with the fastest 
card at 128.  More than 6.5 hours were needed for the 
CPU version in the same conditions.  
 If we now compare with currently used algorithms 
in CPU, such as FRM2D, using a GTX 470 card we 
found 203-, 61- and 23.6-fold speedups, for 64, 128 and 
192 bandwidths, respectively. As expected, the 
speedups were substantially bigger for the GTX 680 
ranging from 54 to 306. We did not implement the 
FRM2D GPU version because of its high memory 
requirements already pointed out in (Cong et al., 2003). 
Finally, it is important to mention that the CUDA 
version maintains the CPU accuracy in all cases tested. 
 
Table 2. GPU speedups relative to CPU implementations 

 GTX 470 GTX 680 
Bandwidth FBM FRM2D FBM FRM2D 

64 17.7x 203.0x 26.8x 306.3x 
128 17.8x 61x 41.1x 148.6x 
192 15.8x 23.6x 36.1x 54.0x 

 
 
4. Conclusions 
In this paper, we implemented and validated a novel 
real-space and correlation-based 2D image registration 
algorithm. By means of Fourier-Bessel functions and a 
suitable recasting of the matching problem, we reduced 
the alignment process to calculate a single 3D FFT. 
 To verify the FBM robustness, we performed 
efficiency and accuracy tests with simulated RNA 
polymerase II images over a wide range of noise levels. 
The method maintains subpixel resolution at 
experimental-like noise levels. The GPU 
implementation boosts the efficiency between 16 and 
41-fold with respect to the single CPU version. 
Moreover, compared with FRM2D, which is currently 
available on the de facto standard EM data processing 
package EMAN, FBM stands a significant 
improvement. In fact, for two different graphic devices 
we obtained speedups ranging from 23 to 300 folds 
relatively to our optimized FRM2D version. More 
importantly, FBM is considerably more accurate at 
experimental like noise conditions.  
 Based on the obtained results, our CUDA-FBM 
should be a sensible choice for image 2D alignment. It 
will be particularly useful in the upcoming EM high-
throughput scenario, where high-resolution structures 
and their huge number of projections have to be 
processed. In fact, we already had successful results 
with real experimental data using this novel approach. 
Our approach could complement recent CUDA 
developments in the EM image processing field 
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(Castaño-Díez et al., 2010; Li et al., 2010; Schmeisser 
et al., 2009; Tagare et al., 2010) and other related Bessel 
based approximations for 3D reconstruction (Estrozi 
and Navaza, 2010).  
 Finally, our CUDA-FBM alignment kernel is a 
general method that can be useful in any application 
where the registration of multiple noisy images is 
required.  
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