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The intrinsic flexibility of proteins and nucleic acids can be

grasped from remarkably simple mechanical models of

particles connected by springs. In recent decades, Elastic

Network Models (ENMs) combined with Normal Model Analysis

widely confirmed their ability to predict biologically relevant

motions of biomolecules and soon became a popular

methodology to reveal large-scale dynamics in multiple

structural biology scenarios. The simplicity, robustness, low

computational cost, and relatively high accuracy are the

reasons behind the success of ENMs. This review focuses on

recent advances in the development and application of ENMs,

paying particular attention to combinations with experimental

data. Successful application scenarios include large

macromolecular machines, structural refinement, docking, and

evolutionary conservation.
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Introduction
Almost two decades ago, Tirion was the first to realize that

functional protein motions can be captured using a greatly

simplified harmonic potential by Normal Mode Analysis

(NMA) [1��]. Shortly afterward, several coarse-grained

versions of Tirion’s elastic network model (ENM) were

proposed, in which a given conformation of the protein

was approximated by a set of particles (e.g., residues

represented by Ca atoms) interconnected by elastic

springs. Two main types of ENM were established:

the anisotropic network model (ANM) [2,3], which cor-

responds directly to the coarse-grained version of Tirion’s

approach, and the Gaussian network model (GNM) [4],

which is a one-dimensional simplification limited to the

evaluation of the mean squared displacements and cross-

correlations between atomic fluctuations magnitude.

From these seminal works, ENMs have proven over
Current Opinion in Structural Biology 2016, 37:46–53 
the years to be an effective approach to understanding

the intrinsic dynamics of biomolecules [5,6�,7].

Although there are many variations to reduce the complex

biomolecular structures into a network of nodes and

springs, the basic assumption (and limitation) of ENMs

is that the potential energy is described by a quadratic

function around a minimum energy conformation:

V ¼
X

i < j

Kijðrij�r0
ijÞ

2
(1)

where the superindex 0 indicates the initial conformation,

rij is the distance between atoms i and j, and Kij is a spring

stiffness function. The intrinsic dynamics of an ENM is

mostly assessed by NMA. In this classical mechanics

technique, all the complex motions around an initial

conformation are decoupled into a linear combination

of orthogonal basis vectors, the so-called normal modes.

The modes are computed solving by diagonalization the

following generalized eigenvalue problem:

HU ¼ lTU where U ¼ ðu1; u2; :::; uN Þ; (2)

where H is the Hessian matrix (partial second derivatives

of the potential energy), T the kinetic energy matrix, and

l is a diagonal matrix with the lk eigenvalues associated

to the kth normal mode uk. As the frequencies ðvk ¼
l2

k=2pÞ are directly proportional to the energy required for

the movement, high frequency modes describe local

motions whereas low frequency modes represent collec-

tive (large-scale) conformational changes. Most impor-

tantly, it has been widely confirmed by many studies that

ENM’s lowest-frequency normal modes often give a

reasonable description of experimentally observed func-

tional motions (see review articles for further methodo-

logical details including experimental validation

[5,6�,8,9]). Following the structure–dynamics–function

paradigm, these collective modes have been conserved

during evolution as they represent the mechanical defor-

mations of lowest energetic cost. Even though the shown

usefulness, the validity of ENM–NMA fluctuations is

limited to small excursions around the equilibrium con-

formation. However, larger deformations can be obtained

by iteratively applying small displacements along the

lowest modes [10].

There is an overwhelming literature validating the use of

ENM in multiple scenarios. This review focuses on the

recent progress of ENM for characterizing macromolecu-

lar flexibility, predicting functional conformational

changes, and assisting in the interpretation of structural

experimental data, paying close attention to hybrid
www.sciencedirect.com
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methods that combine ENM with simulations and/or

experimental data.

Trends in ENM development
The agreement between the observed functional motions

and the lowest frequency modes extracted with NMA is

relatively well preserved independently of model or

potential details, evidencing the approach’s robustness

as long as the 3D contact topology is reasonably main-

tained. In the past, many research efforts were dedicated

to further simplifying ENMs and extend the application

range to larger systems. Notable reductions can be

obtained by grouping atoms into clusters [11,12] or into

rotational and translational blocks [13,14] without sub-

stantial loss of accuracy. Even from low-resolution 3D

reconstructions, it is still possible to obtain insight into the

macromolecular global flexibility [15,16], revealing the

importance of the shape in determining the lowest-fre-

quency normal modes. Other authors have used more
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sophisticated schemes to reduce the main computational

bottleneck of the NMA, the diagonalization of the Hes-

sian matrix, for example, by calculating only the relevant

normal modes of interest [17] or considering the system

symmetry [18–20]. Another elegant way to reduce the

computational cost is working in internal coordinates

(IC). Using dihedral angles as ICs instead of Cartesian

coordinates reduces the number of degrees of freedom,

leading to substantial savings in computational resources.

Moreover, the implicit maintenance of the covalent struc-

ture preserves the model geometry and minimizes the

potential distortions frequently observed in Cartesian

approaches. Based on early works by Go and Levitt

[21,22] that established the complete mathematical

framework, several authors successfully developed differ-

ent coarse-grained ENM approximations using torsion

angles as variables [23–25]. Despite the convenience of

ICs [26], the vast majority of current approaches are

Cartesian-based because of their simplicity (i.e., the
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kinetic energy matrix is reduced to the identity) and

straightforward implementation. In the opposite direction

from increasing coarseness, the parameterization of the

potential energy (e.g., the definition of spring stiffness

constants) for better reproduction of the observed intrin-

sic flexibility also led to interesting advances. There is an

extensive literature dealing with different variations of

the ENM that add complexity to the network by consid-

ering, for instance, chemical bond information [27], back-

bone secondary structure [28], side chain identity [29],

atom type [30,31], or anharmonicity [32].

In most studies thus far, the spring constants and model

parameters have been fitted to obtain atomic fluctuations

according to the crystallographic B-factors, even achiev-

ing an almost perfect fit [33,34]. Although crystalline

environment symmetry can be accounted for [20], crystal

packing effects, internal static disorder, and refinement

errors prevent B factors from being a fully reliable

measure of intrinsic flexibility [35,36�]. Validating ENMs

against Nuclear Magnetic Resonance (NMR) ensemble

data is a more suitable option, but missing data would

artificially increase the structural diversity. High-resolu-

tion structures solved in multiple conformations provide a

reliable but partial picture of flexibility because they are

usually limited to a few states, and information about

intermediates is sparse or non-existent. Despite these

drawbacks, principal component analysis of crystallo-

graphic and NMR ensembles has proven that the normal

modes capture the collective conformational variability of

proteins fairly well [37]. However, the development of a

gold standard for benchmarking intrinsic flexibility in

solution remains an open question.

An interesting alternative to refining ENMs is found in

direct comparison with Molecular Dynamics (MD)

simulations. In fact, there is a good correspondence

between protein Essential Dynamics (ED) extracted

from atomistic MD simulations and ENM-based

NMA [38,39]. To the best of our knowledge, Hinsen

was the first to validate ENM with a short MD simula-

tion to derive an improved spring stiffness function [40].

ENM force constants can be directly calculated from

MD variance–covariance matrices by inversion [41],

iterative adjustment [42], or entropy maximization

[43]. In this line, we extracted simple connectivity rules

to obtain more realistic ENM spring forces and atomic

fluctuations by comparison with a database of represen-

tative MD trajectories [44]. Our improved ENM was

more robust against protein size or fold variations and

captured the flexibility of NMR structural ensembles

better than other standard ENMs. Advances in computer
( Figure 2 Legend ) Flexible fitting of atomic structures into electron density

stalk of the eukaryotic V-ATPase (top panel), the coat protein complex II co

(bottom panel) using iMODFIT [56�], NMFF [59], and DEN-DireX [67], respec

maps in gray. Reproduced with permission from Refs. [61,63,90].
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hardware and software have now made it possible to run

MD simulations at longer timescales, even reaching

milliseconds of simulation. Bahar and coworkers,

showed how ANM lowest-frequency modes naturally

facilitate interconversion between the most probable

distinct conformations sampled by micro-to-millisecond

MD trajectories of two protein conformational transi-

tions [45�]. We think that future accessibility to very long

MD simulations [46] of different systems will be crucial

in developing a more faithful description of the intrinsic

flexibility based on ENMs.

Broadening the ENM application range
Providing an exhaustive coverage of the many applica-

tions of ENM–NMA (Figure 1) is out of the scope of this

review. Here we focus in ENM-based hybrid methods

that enable the interpretation of the structural dynamics

information extracted from complementary biophysical

techniques and simulations, especially for large macro-

molecules and supramolecular complexes.

Huge macromolecular machines

Large macromolecular complexes are the main actors

of biological processes. Understanding how they work

and how they move is critical to understanding cellular

function and is among the most challenging tasks for

current structural biology. Unfortunately, their large size

and the long time scale of their functional motions are

often prohibitive for traditional MD. In this context,

ENM has arisen as a powerful alternative to yield molec-

ular insights into the fluctuations of macromolecular

complexes and the mechanisms of their large-scale func-

tional rearrangements from a single atomic structure. For

example, the swollen motion of complete virus capsids or

the functional motions of the ribosome have been suc-

cessfully characterized by ENM [47]. An interesting

source of large supramolecular complexes can be found

in membrane proteins. The functional mechanisms of ion

channels or membrane receptors and transporters appear

to be dominated by a few collective motions, indepen-

dently of the membrane environment (for a complete

review, see [8]). There is plenty of room to improve and

extend the applicability of ENM in the study of the

relevant biological processes occurring in huge size sys-

tems at longer time scales (e.g., considering solvent

damping effects). In this context, we significantly extend-

ed the applicability of our internal coordinates ENM

towards much larger systems (>100K residues), such as

long actin filaments or microtubules, by effectively re-

ducing the computational burden of the diagonalization

step using parallel strategies with multicore technology

[48].
 maps using several ENM-based strategies. Fitting of the peripheral

at assembly (middle panel), and two domains of clathrin adaptors

tively. The atomic structures are represented with ribbons and the EM
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The majority of the work in this area has been confined to

proteins, and only limited attention has been paid to

investigating nucleic acids. Nevertheless, there are im-

pressive examples of the power of ENM and NMA to

reveal different functional motions of the ribosome

[47,49,50] or well-packed RNAs [51]. Additionally, the

ability of normal modes of ANMs to capture the spatial

variance observed in a collection of 16 RNA ensembles,

many of which are riboswitches, has been confirmed [52�].
Recently, different ENMs have been optimized to repro-

duce the flexibility of RNA and DNA structures using a

large data set of experimentally determined structures

and MD simulations [53]. Additional validation of ENMs

against MD simulations of RNAs and SHAPE experi-

ments has also been recently reported [54].

Hybrid methods for structural refinement and simulation

In the current integrative structural biology context, the

merging of information from electron microscopy (EM)

and atomic resolution techniques [55] constitutes a fruit-

ful scenario for ENM to decipher the dynamics of essen-

tial macromolecular complexes. Computational flexible

fitting techniques based on ENM–NMA enable the dy-

namic interpretation of low/medium-resolution EM data

captured in different functional states in terms of avail-

able atomic structures [56�,57,58] (Figure 2). In these

techniques, an initial atomic structure is iteratively de-

formed using the conformational space spanned by their

lowest frequency modes for improving the density over-

lap with a target EM map. Impressive results have been

obtained in the study of the infective swelling motion of

the Cowpea chlorotic mottle virus by flexibly fitting the

closed crystallized structure into the mature 3D EM

reconstruction [59]. Other representative examples of

ENM–NMA flexible fitting applications include the

structural characterization of the ribosomal machinery

[47,60], ATPases [61,62], the coat protein complex II

cage [63], and several virus capsids [64,65]. The deform-

able elastic network (DEN) is also based on an ENM, but

instead of using NMA to guide the low-resolution refine-

ment, it employs torsion-angle MD to fit either X-ray or

cryo-EM data [66,67]. NMA-based elastic iterative 3D-to-

2D alignment has been integrated into the 3D EM

reconstruction process [68]. Other hybrid strategies ex-

ploit the synergism of ENMs with Small Angle X-ray

Scattering using NMA [69] or Newton–Raphson [70]

methods. Notice that in these hybrid strategies the ex-

perimental data naturally constraints the amplitude and

the relative importance of the modes alleviating one of

the ENM–NMA drawbacks.

Combining ENM with atomistic simulations is another

remarkable hybrid approach. Collective modes have been

successfully incorporated into MD simulations to speed

up large-scale domain motions [71–73]. For example,

Bahar and colleagues took advantage of the ANM collec-

tive motions selected by a Monte Carlo-Metropolis algo-
Current Opinion in Structural Biology 2016, 37:46–53 
rithm to generate transition pathways in close agreement

with detailed full-atom MD simulations [74]. The com-

bination of internal coordinates NMA and MD umbrella

sampling has also proven useful to describe ligand-driven

conformational transitions [75]. By numerically solving

the equations of motion of an ENM [76] or by NMA–
ANM [77], the relative mechanical responses of different

residue pairs under unfolding tension forces can be

quantitatively described.

Protein docking

In the context of ab initio prediction of protein complexes

from their isolated structures, a comprehensive analysis of

two thousand unbound-to-bound transitions revealed that

the changes observed in one-third of the cases can often

be described using the deformation modes computed

from the unbound structures [78]. Zacharias pioneered

the use of a few lowest modes to improve the quality of

near-native docking solutions, at least for several test

cases [79]. Other approaches such FiberDock [80],

SwarmDock [81], or EigenHex [82] effectively exploited

ENM vibrational modes to account for flexibility and

improve the docking predictability. SwarmDock, one of

highest performing methods in the Critical Assessment of

Prediction of Interactions (CAPRI) contest, uses only a

few low frequency modes as a component of the optimi-

zation vector to model transitions between unbound and

bound conformations. The employ of ENM–NMA in

small-molecule docking is rather limited likely because

it fails to describe local changes [83].

Intrinsic dynamics conservation

The intrinsic dynamics predictable by ENM–NMA

appears as a major determinant in protein–protein and

protein–ligand interactions, allosteric response modula-

tion, and assembly mechanisms. Moreover, in many cases,

the conservation of low frequency modes throughout the

evolution has been well characterized [84–86]. The vali-

dation of several ENMs for the comparative analysis of

protein dynamics across structures with different confor-

mations and within a protein family has also been recently

addressed [87]. In terms of the evolutionary selection of

structures and their intrinsic dynamics, the predictions of

dynamical structural couplings (allosteric), critical resi-

dues (hot spots), or mutagenic effects are quite interest-

ing research topics. For more information about the

subject, the reader is referred to excellent review articles

[88��,89].

Conclusions and perspectives
Although we remain intrigued by the simplicity of the

approach and are aware of its limitations, ENM has

proven successful over a wide range of applications.

Pushing up against the limits of methodology, research

will continue to improve and design new ENMs for

recovering large scale conformational changes in large

macromolecules with higher accuracy. In this endeavor,
www.sciencedirect.com
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structural data from a great variety of experimental

sources such as X-ray crystallography, NMR, EM, SAXS,

among others, as well as extended MD atomistic simula-

tions, will provide crucial information for the successful

parameterization of new ENMs. Undoubtedly, ENM-

based hybrid approaches will continue to play important

roles by enabling the dynamic interpretation of the

structural information of supramolecular structures and

assemblies from complementary structural biophysical

techniques and simulations. Bridging structural dynamics

and evolution with ENM will also open new interesting

perspectives. Moreover, the efficiency, scalability, and

robustness of the approach will definitely contribute to

maintaining its popularity and extend the application

range in which an efficient engine to explore large scale

collective motions is needed, particularly in a structural

integrative framework.
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