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ABSTRACT

Motivation: Dynamic simulations of systems with biologically
relevant sizes and time scales are critical for understanding
macromolecular functioning. Coarse-grained representations
combined with normal mode analysis (NMA) have been established
as an alternative to atomistic simulations. The versatility and
efficiency of current approaches normally based on Cartesian
coordinates can be greatly enhanced with internal coordinates (IC).
Results: Here, we present a new versatile tool chest to
explore conformational flexibility of both protein and nucleic acid
structures using NMA in IC. Consideration of dihedral angles
as variables reduces the computational cost and non-physical
distortions of classical Cartesian NMA methods. Our proposed
framework operates at different coarse-grained levels and offers an
efficient framework to conduct NMA-based conformational studies,
including standard vibrational analysis, Monte-Carlo simulations or
pathway exploration. Examples of these approaches are shown to
demonstrate its applicability, robustness and efficiency.
Contact: pablo@chaconlab.org
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Dynamic simulations of large molecules long enough to observe
functional changes are challenging. Normal mode analysis (NMA)
merged with coarse-grained (CG) models has proven to be a
powerful and popular alternative to simulate collective motions
of macromolecular complexes at extended timescales (Bahar and
Rader, 2005; Bahar et al., 2010; Cui and Bahar, 2007; Ma, 2005;
Skjaerven et al., 2009; Tama and Brooks, 2006). The CG-NMA
application range includes: the prediction of biologically relevant
motions of proteins and nucleic acids (Hinsen et al., 1999; Krebs
et al., 2002; Tama and Sanejouand, 2001), even with low-resolution
structures (Chacon et al., 2003); X-ray refinement (Delarue and
Dumas, 2004; Kidera et al., 1992; Lindahl et al., 2006); protein and
ligand docking (Cavasotto et al., 2005; Zacharias, 2010); flexible
fitting of atomic structures into electron microscopy density maps
(Delarue and Dumas, 2004; Hinsen et al., 2010; Tama et al., 2004);
efficient generation of conformational pathways (Franklin et al.,
2007; Kim et al., 2002; Miyashita et al., 2003); and identification
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of conserved dynamic patterns within protein families (Leo-Macias
et al., 2005).

NMA describes the relevant collective motions based on the
harmonic approximation around a local minimum, which allows
for solving the Lagrangian equations of motion by diagonalizing
the Hessian and kinetic energy matrices. The resulting eigenvectors
are a set of orthogonal displacements or normal modes. The
high-frequency modes represent localized displacements, whereas
low-energy modes correspond to collective conformational changes.
These collective motions are closely related to functional motions
(Krebs et al., 2002; Yang et al., 2007) and they have been correlated
with essential motions extracted from molecular simulations
(Ahmed et al., 2010; Rueda et al., 2007). These results and many
others validate the use of NMA and CG modeling to describe
molecular flexibility, serving as a powerful alternative to costly
atomistic simulations.

For relatively large systems, the main bottleneck of NMA
is the diagonalization step that can easily go beyond standard
computers. The vast majority of current NMA approaches have
adopted Cartesian coordinates (CC) as variables. However, internal
coordinate (IC) method requires at least one-third less degrees of
freedom (DoF) and hence reduces both computational time and
memory usage. Moreover, in CC the covalent bonding geometry
is not implicitly preserved, thus allowing potential non-physical
geometrical distortions. The mathematical simplicity (e.g. kinetic
energy matrix is reduced to the identity) and its straightforward
implementation are behind the CC preference. Nevertheless, several
exceptions have shown the IC potential rewards. Early work by
Go and others (Go et al., 1983; Levitt et al., 1985; Noguti and
Go, 1983a) led to the development of a complete mathematical
framework using dihedral angles. This full atomic approximation
has been extended to include even bond stretching and angle bending
(Kamiya et al., 2003). ProMode is a full-atom NMA repository
where users can only explore pre-computed results of >3000
proteins (Wako et al., 2004). The integration of CG approximations
with IC also has been successfully explored. Pioneering work by
Tirion with elastic network models in IC (Tirion, 1996) has been
continued by others (Kovacs et al., 2005; Lu et al., 2006; Mendez
and Bastolla, 2010). However, the scope of these approaches is
mainly theoretical and none of them are accessible as functional tool.

Here, we present a new multipurpose tool chest, named iMod,
to exploit the benefits of classical NMA formulations in IC while
extending them to cover multiscale modeling. Ordinary torsion
angles are maintained as variables, whereas different graining
levels were incorporated to represent protein structure (e.g. with
only α carbons). These atomic models can be easily combined
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with several elastic networks in a highly customizable framework,
including user-defined potential or the immobilization of parts
of the macromolecular system by removing their dihedral angle
variables. iMod has been designed to be versatile and can handle
also multiple chains, nucleic acids and rigid ligands. The versatility
and efficiency of this new integrative framework expand the
applicability range of NMA especially to very large systems.
Here, we show its robustness describing several representative
conformational transitions. We also illustrate its applicability in
two simulation contexts: conformational sampling and pathway
trajectory generation.

2 METHODS
Here, we outline the basic mathematical framework for performing NMA.
Briefly, macromolecular motion can be described as a combination of normal
modes determined by solving the following generalized eigenvalue problem
(Noguti and Go, 1983a):

HU =λkTU where H = ∂2V

∂qα∂qβ
and U = (u1,u2,...,uN ), (1)

where λk is the eigenvalue associated with the k-th normal mode uk ; α and β
are the IC indices; and H is the Hessian matrix. The eigenvalues are related
to the frequencies, νk , as λk = (2πνk)2. The potential energy expressed in N
ICs, q, is given by

V = 1

2
qHqT with q= (qα−q0

α) and α=1,...,N (2)

being q is the coordinate’s displacement from the equilibrium conformation
at a given energy minimum, q0. In a similar way, the kinetic energy can be
expressed as follows:

T = 1

2
q̇T q̇T where Tαβ=

∑
i

mi · ∂ri

∂qα
· ∂ri

∂qβ
(3)

The mass of the atom i is mi and ri the corresponding CC.
The diagonalization of Lagrange’s Equation (1) yields solutions of the

form:

q=q0 +
N∑

k=1

akuk cos(2πvk ·t+δk) (4)

Where an and δn depend on the initial conditions and νn is the angular
frequency associated at each normal mode. The direct calculation of T scales
to O(N3), whereas H even reaches O(N4). This computational burden can
be significantly reduced in both cases to O(N2) by employing recursion
relationships (Braun et al., 1984; Noguti and Go, 1983b). Then, the O(N3)
diagonalization step performed with LAPACK subroutines (Anderson et al.,
1999) becomes the main computational bottleneck.

The ICs are defined by the canonical backbone dihedral angles, i.e. φ and
ψ in proteins and α, β, γ , ε and ζ in nucleic acids. By default, side chains,
sugars and bases are considered to be rigid bodies but optionally the dihedral
angle χ can also be included. To avoid ring closure problems, φ is fixed for
prolines and δ in nucleic acids. The first φ angles and the last ψ of the chains
are also not considered. The remaining dihedral angles and all covalent bond
lengths and angles are assumed to be fixed, thereby preserving the underlying
covalent structure. To account for multiple chains, the corresponding six rigid
body variables are added to describe their relative motion. Moreover, any
subset of the above-described internal variables can be fixed to allow arbitrary
definition of the rigid parts of the system. This technique is very useful to
reduce the computational cost of large systems or to prevent flexibility in
known rigid regions. Although this is the most direct way to reduce the
number of variables, CG can be done at many other levels. Three different
representations can be selected:

• HA: considers all heavy atoms.

• C5: each residue is represented by five pseudo-atoms—three for the
backbone (NH, Cα, CO) and two for the side chain (Cβ and virtual
mass located at the mass center of the remaining side chain atoms)
(Cavasotto et al., 2005; Kovacs et al., 2005).

• Cα: a single Cα atom per amino acid (Lu et al., 2006; Mendez and
Bastolla, 2010). In this case, the backbone carbonylic carbon and
nitrogen atoms are only considered to define the dihedral angles.

Only the heavy atom representation is currently available for nucleic acids.
Note that in all cases the backbone covalent structure is always maintained.

Independently of the atomic model used, the non-bonded atoms (or
pseudo-atoms) are interconnected by harmonic springs. The potential energy
can be formulated as follows:

V =
∑
i<j

Fij(rij −r0
ij)

2 +s
∑
α

(θα−θ0
α)

2
(5)

The first term describes the atom pairwise part of the harmonic potential,
where rij is the distance between atoms i and j, the super-index 0 indicates
the initial equilibrium conformation and Fij represents the spring stiffness
matrix whose elements describe the force constant associated with each
atom pair. This generic function is also a customizable element in our
implementation. Users can choose between a basic cut-off function (Tirion,
1996), exponential-like functions (Hinsen et al., 1999; Rueda et al., 2007)
and an essential dynamics (ED) refined potential (Orellana et al., 2010) or
even define their own stiffness matrix. By default, we used the following
sigmoid function:

Fij = k(
1+

(
r0
ij

r0

)p) , if r0
ij<rcut, otherwise Fij =0. (6)

In this equation, k gives the maximum stiffness, r0 represents the inflexion
point, p denotes the sigmoid shape and rcut is a convenient cut-off for
removing ineffective very weak springs from calculations. The parameters
k, r0, p and rcut were set to 1, 3.8 Å, 6 and 10 Å, respectively, to obtain the
same behavior of the exponential function used in Rueda et al. (2007). We
found this parameterization quite robust with all models used.

The second term of (5) is an extratorsional stiffness, s, which is related
to each dihedral angle, θα. This term prevents the so-called tip effect, i.e.
the presence of irrational low frequencies typically caused by floppy small
regions [for more details, see Lu and coworkers (Lu et al., 2006)].

Simulation applications: low-frequency IC modal space was effectively
used in two applications: iMorph and iMC (see flowcharts in Supplementary
Fig. S1). The iMC tool performs a Monte-Carlo (MC) sampling to get
a trajectory using the 5–10 lowest frequency modes. In each step, a
new trial displacement is obtained by randomly selecting a mode and its
amplitude. Such displacement is accepted according Metropolis criteria, with
a probability defined by the minimum of (1,e−�E/kT ), where �E is the
difference between the harmonic energy of the new and old conformations.
To prevent low acceptance rates and improve the sampling efficiency, the
mode amplitude was balanced following the scaled collective variable MC
method (Yamashita et al., 2001). After 1000 MC steps, a new conformation
is generated by applying the resulting modal displacement to the initial
structure. The whole MC protocol is repeated several times to generate a
structural ensemble. In this study, iMC was used for generating ensembles
of 1000 conformations around a set of known apo structures at 300 K. In each
case, a stiffness factor was adjusted to yield structures with average RMSD
around the 60% of the motion amplitude between holo and apo structures.
This procedure also avoided large distortions of the initial structure.

In iMorph, the collective deformation directions of the modes are used
for simulating feasible transitions between two known conformations. This
iterative process starts by calculating only the 10% lowest frequency part
from the initial structure. After collectively scaling as before, 10% of these
modes are selected and merged. The modes selection is inversely proportional
to their eigenvalues and the merging is done with random amplitudes. Thus,
the resulting displacement includes deformational directions of the first
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modes but with random relative contributions. Then a new conformation
is generated by moving the structure along the directions encoded into the
merged displacement. Such conformation is accepted only if its RMSD
is closer to the target structure; otherwise, new modes are selected and
combined. If the new structure diverges 0.1 Å from the last structure used for
the NMA, then the modes are computed again. This procedure is repeated
until the flexed structure converges to the target. Alternatively, during the
pathway generation part of dihedral angles can be fixed. To this end, every
time the NMA is computed new subsets of dihedral angles variables are
randomly removed from the calculations.

Test datasets: we selected 23 different open/closed protein pairs with
displacements >2 Å RMSD from the molecular motions database (Flores
et al., 2006). These examples have different sizes (186–994 amino acids)
and correspond to a wide variety of macromolecular motions. The structures
are relatively large and conform to the quality scores of the standard structure
validation program Molprobity (Chen et al., 2010). Hydrogen atoms were
added to each conformation before checking its structural integrity. Although
hinge motions are predominant, the test set also includes shear and other
complex protein motions. The average displacement was 7.57±4.39 Å. To
complement our test with nucleic acid motions, we screened the PDB for
RNAcollective conformational changes. We selected 11 conformational pairs
with motion displacements >3 Å that passed the Molprobity criteria. The
average displacement was 7.23±2.37 Å. The size of the RNAs is small
(40–126 nt) except for two large rRNAs formed by 721 and 1529 nt. The
complete list of protein and RNA test cases is detailed in Supplementary
Table S1.

Technical details: all calculations were performed using a Linux box with
an Intel® Core™2 Quad Q6600 processor with 4 GB of RAM. The CC-NMA
was preformed with an updated version of DFprot (Garzon et al., 2007). All
the tools and databases presented here, including full documentation and
tutorials, are available at http://chaconlab.org/imod/index.html,

3 RESULTS
In this section, we illustrate the use of low-frequency modal spectra
by our IC CG-NMA approximations to describe protein flexibility.

3.1 Vibrational analysis
The most straightforward application for our method is the
computation and exploration of normal modes to identify potential
functional motions. The collective character of such motions can be
captured by a few low-frequency normal modes. Within our new
tool chest, iMode can compute the vibrational modes from multiple
chains of proteins or nucleic acids, even supporting rigid ligands.
To animate the resulting soft modes, the iMove tool generates
a trajectory file that can be visualized with standard molecular
viewers. In addition to visual inspection, other parameters such
as B-factors and deformabilities (Garzon et al., 2007) can also
be obtained. The users can easily adapt the CG level to their
needs by selecting an atomic model resolution from a heavy
atom representation to a simple Cα model. Moreover, the dihedral
variables can be freely removed, thereby allowing for freezing parts
of the macromolecular system. Our NMA implementation is very
fast. For example, the biggest protein test case (ATPase pump, 994
residues), takes 11 s to complete the analysis at maximal model
resolution. The high versatility and efficiency permit NMA of very
large structures in commodity hardware. For example, the Cowpea
Chlorotic Mottle Virus (CCMV) NMA can be computed in just 1 h
on a standard 4 GB RAM Linux box by fixing 75% of the dihedral
angles. This calculation required ∼15 000 internal variables. Two
representative characteristic modes of this NMA are shown as an

Table 1. Protein conformational transitions overlaps

αa
1 α2 α3 δb

3 δ5 δ10 Nαc
1 Nσd

90% γe
3 γ10 γ50

Average ICf 0.70 0.34 0.25 0.78 0.84 0.89 1.7 107 0.98 0.93 0.90
Open to closed 0.77 0.30 0.23 0.86 0.89 0.92 1.3 90 0.98 0.94 0.90
Closed to open 0.63 0.38 0.28 0.71 0.80 0.86 2.2 125 0.97 0.93 0.89
Average CC 0.70 0.34 0.24 0.77 0.83 0.89 1.8 155 1.00 1.00 1.00

aOverlap between the transition vectors �r and the first, second and third most
overlapping modes (vn). Calculated as: α1,2,3 =|�r ·vn|/[‖�r‖‖vn‖].
bThe cumulative overlap contribution of the 3, 5 and 10 lowest energy modes was
computed from: δn = (

∑n
k=1α

2
k )1/2.

cRank of the best overlapping normal mode.
dNumber of modes required to cover the 90% of the modal variance.
eOverlaps between deformation spaces u and v were computed using (Noy et al., 2006):

γn =1/
n
∑n

i,j
(
ui ·vj

)2 where n is the number of eigenvectors considered.
f NMA in IC and CC was performed with iMode and DFprot (Garzon et al., 2007),
respectively. In both cases, Cα model was used with the EDs refined potential (Orellana
et al., 2010). The averages include all protein transitions detailed in Supplementary
Table S1.

animation in the Supplementary Material. The first mode has been
proposed to explain the maturation pathway from the native to the
swollen state of the CCMV virus (Tama and Brooks, 2002). The
second animation corresponds to the lowest energy mode of the
icosahedral symmetry group (van Vlijmen and Karplus, 2005).

3.2 Conformational transitions
As a validation test, we contrasted the overlaps between the 23
motions observed in our transition dataset with the modes obtained
from each conformer. To compare with the CC approach, we
restricted this study to the Cα model using the potential optimized
against a set of representative MD trajectories (Orellana et al.,
2010). The overlap has been measured with a normalized dot
product between the vector calculated from the two crystallographic
conformers and the modal displacements (Table 1). On average, the
best overlapping mode yielded a value of 0.70, indicating excellent
agreement with the experimental transition vectors. Moreover, these
best modes usually corresponded to the first or second low-energy
modes. The cumulative overlap of the first three modes, δ3, was
0.77. If we included up to the 5th or 10th modes, the scores increased
to 0.83 and 0.90, respectively. In other words, only 10 modes were
needed to account for 90% of the observed change. These results are
in agreement with the fact that the low-frequency modes correlate
very well with the biologically relevant motions. Similar overlaps
within the macromolecular motion database have been found (Krebs
et al., 2002). Remarkably, lower values have been observed when
the NMA is performed from the closed conformation. The best
mode overlap, α1, dropped from 0.77 to 0.63, and the overlap δ10
was reduced ∼7% when the closed conformation was used. It is
well known that NMA performs better from open forms (Tama
and Sanejouand, 2001). Nevertheless, the δ overlap values from
close conformations were still high, and 5 modes accounted for
80% of the motion. Overlaps for individual cases are found in the
Supplementary Table S2.

No major differences occurred between computing the NMA in
internal or in CC. The overlaps and hence the first modes are almost
identical (Table 1). The deformation spaces determined by the two
methods overlapped considerably with γ scores >0.9, indicating
that CC low-frequency modes correspond mainly to dihedral angle
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Table 2. Protein and RNA conformational transitions overlaps

Modela α1 α2 α3 δ3 δ5 δ10 Nα1 Nσ90% γb
3 γ5 γ10

Cα 0.70 0.34 0.23 0.77 0.83 0.88 1.7 118 1.00 1.00 1.00
C5 0.68 0.33 0.23 0.75 0.81 0.86 1.7 226 0.94 0.89 0.87
HA 0.70 0.33 0.22 0.76 0.82 0.87 1.8 368 0.91 0.87 0.85
Cα-50% 0.69 0.37 0.24 0.78 0.84 0.89 1.6 85 0.98 0.95 0.94
Cα-90% 0.63 0.40 0.25 0.74 0.80 0.88 2.0 30 0.75 0.69 0.66
RNA 0.66 0.38 0.25 0.77 0.82 0.86 1.6 45 – – –

aAll the calculations were performed as in Table 1 but using the default sigmoid potential
(see Section 2). CG protein models: Cα, a Cα atom per residue; C5, 3 atoms for backbone
and 2 for the side chain; HA, considering all heavy atoms; Cα-50%, as Cα but fixing
randomly 50% of the dihedral angles; Cα-90%, fixing 90%; and for RNA only the heavy
atoms model was used.
bThe γ overlaps were restricted to Cα atoms. Compatible eigenvectors for C5 and HA
cases have been obtained by diagonalizing the corresponding Cα covariance matrices.

motions (Kitao et al., 1994). However, we detected differences
in the number of modes needed to account for 90% of the variance.
In this case, the IC required ∼30% fewer modes to express the same
variance ratio. These results suggest that the conformational space
described by modes computed in IC is more compact.

iMode is faster and consumes much less memory than classical
CC approaches, especially when molecular size is big enough. For
example, the NMA using the Cα model for acetyl-CoA synthetase
(1oao, 728 residues) with CC takes twice the time of IC (6.6 s versus
3.7 s). The comparison with Cα model is the most favorable for
the CC approach because three DoF per Cα are needed, whereas
IC approximation required only two dihedrals (i.e. only one-third
less). The profit becomes more apparent as more pseudo-atoms are
considered in the atomic model. A heavy atom representation for the
same synthetase demanded 43 min for CC (5739 atoms, 17217 DoF)
and just 4.7 s for iMode (1412 DoF). Furthermore, the CC memory
requirements become a bottleneck with relatively large proteins. The
biggest protein of our validation test (ATPase pump, 994 residues,
∼23 000 DoF in CC) cannot be computed with HA representation
without exceeding the 2 GB memory allocation limit of 32-bit PCs.
In contrast, our approach took only 11 s for this case (1942 DoF). In
principle, iMode can handle proteins ∼15 000 DoF (∼7500 residues)
in a 32-bit machine.

Table 2 shows the average results obtained at different CG levels.
For comparative reasons, we employed the default sigmoid potential
described in Section 2. No major differences were observed, as
the motion was already captured by the first two or three modes
(Nα1<2, δ3>0.75). These modes depend mainly on the molecular
shape, which is the same for all of the CG levels used. Although
the first modes are equal, the deformation spaces differ from each
other specially at higher frequencies. Taking Cα as a reference, the
γ scores become smaller as a larger number of eigenvectors are
considered or as more detailed representations are used (Table 2).
For example, Cα and HA had γ overlaps of 0.91, 0.87 and 0.85
for deformation spaces comprising the 3, 5 and 10 lowest energy
eigenvectors, showing a clear divergence as more modes were taken
into account. Inclusion of more atoms in the representation also
affected the overlaps, e.g. C5 and HAyielded gradually lower values.

The overlap results of the 22 RNA test cases were in agreement
with our results from proteins (Table 2). The collective RNA
transitions also correlated very well with the low modal subspace.

The best overlapping mode scores were similar to those of the
proteins using the same potential and HA model. The high overlap
values (e.g. δ10>0.85) reflect the good description for RNA motion
provided by the low-frequency modes. The size of the RNA cases
was smaller than the protein dataset, so the number of modes that
were needed to account for 90% variance was reduced to 45. As for
the proteins, the memory limitations and computational cost were
strongly reduced using IC. For example, the 7S RNA case took 1 s
with IC (1mfq, 126 nt, 628 DoF), whereas CC (2708 atoms, 8124
DoF) took 5 min. The two biggest rRNA cases were also beyond
the scope of CC using the HA model with a 32-bit machine. In
contrast, the biggest case in IC (3e1a, 1529 nt, 32811 atoms, 7651
DoF) took ∼9 min. On a case-by-case basis, the conformational
RNA transitions results are shown in Supplementary Table S3.

Notably, we observed that the space described by the low-
frequency modes was quite robust when we randomly removed
different percentages of dihedral variables. The first modes in
proteins were essentially the same (γ close to 1 and very similar
α and δ values) for fixing percentages <50%. The equivalence and
the overlaps with the motions decayed more drastically as more
dihedral angles are fixed. By removing 90% of the DoF, part of
the conformational transition was kept in the most overlapping
mode (α1 =0.63), but the deformational space clearly diverged
(γ10 =0.66) from the complete Cα model case. Similar behavior was
observed for more detailed models and for RNA (data not shown).
As discussed below, removing a fraction of the dihedral angles from
the NMA calculations is an effective CG approach.

3.3 Conformational pathways
Simulating the structural transition between two known
conformations of a macromolecule has been successfully performed
by CG-NMA (Franklin et al., 2007; Krebs and Gerstein, 2000;
Lindahl et al., 2006; Miyashita et al., 2003). Here, we tested a
simple approach, named iMorph, to generate plausible trajectories
using the space encoded into low-energy IC modes. In an iterative
process that only uses the 10% lowest frequency modes; the initial
structure is flexed gradually toward the target by minimization of
their relative RMSD. In all of the 46 protein test cases, the initial
structure converged fast and smoothly to the target as illustrated
in Figure 1 with a representative case. On average, the target and
closest conformations were<1 Å from an initial deviation of 7.57 Å
(Table 3). As before, a very small difference with the morphing
direction has been observed. In the case of HA (Supplementary
Table S4), the average deviation was 0.74 Å from open to closed
and 0.80 Å from closed to open.

The quality of the pathway structures was checked with
Molprobity (Chen et al., 2010). Final conformations preserved the
original crystallographic quality with scores expected for resolutions
close to 3 Å from an initial value of 2.7 (Table 3). Few more
clashes and almost no extra Ramachandran outliers were observed
compared with initial structures. This structural quality was also
preserved along the simulation trajectory (6–9 more clashes) and
only the final part models usually had more collisions (14–27). See
a typical variation of the clashes on Figure 2A. Considering that
we did not use any minimization strategy, the absolute number of
collisions was still very small. These few clashes are mainly caused
by the added hydrogens of the lateral chains. In contrast, other CC
CGNMA approaches have incorporated regularization steps to avoid
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A

B

Fig. 1. GroEL conformational pathway. (A) Variation of the RMSD (solid
line) and Molprobity clashes (dotted line) along pathway from closed (1oel,
cyan) to open (1sx4, yellow) conformation. (B) Structural superposition of
the initial (left) and final (right) conformers with the open target structure. The
corresponding pathway animation is available in Supplementary Material.
The final deviation is only 1.12 Å with 41 clashes using the HA model.

Table 3. Conformational pathways results

RMSD [Å]a Clashb %rc
out Molprobityd te

Modelf I F I A F I A F I A F

Cα 7.57 0.79 21 36 48 0.6 0.6 0.7 2.7 2.9 3.1 5.1
Cα-50% 7.57 0.86 21 34 45 0.6 0.6 0.6 2.7 2.9 3.1 1.2
Cα-90% 7.57 1.06 21 37 53 0.6 0.6 0.6 2.7 2.9 3.1 0.6
C5 7.57 0.75 21 29 37 0.6 0.6 0.8 2.7 2.9 3.0 6.1
HA 7.57 0.77 21 27 35 0.6 0.7 0.8 2.7 2.8 2.9 6.9
HA-50% 7.57 0.80 21 27 35 0.6 0.6 0.7 2.7 2.8 2.9 2.4
HA-90% 7.57 1.06 21 33 50 0.6 0.6 0.6 2.7 2.9 3.1 2.1
RNA 7.23 1.34 32 33 37 – – – – – – 13.0g

RNA-50% 7.23 1.39 32 33 37 – – – – – – 5.1g

RNA-90% 7.23 1.58 32 41 54 – – – – – – 3.9g

aRMSD computed with Cα or P atoms.
b−dScores computed with Molprobity (Chen et al., 2010).
bNumber of serious clashes per 1000 atoms.
cPercentage of Ramachandran backbone φ and ψ angles outside the allowed region.
dLog-weighted combination of scores which reflects the crystallographic resolution at
which those values would be expected.
eMean running time in minutes.
f Average values conformational pathway test cases obtained with iMorph using a
sigmoid potential. Values shown for initial (I), final (F) and average conformations
(A). CG representations as indicated in Table2.
gFor the two biggest RNA cases, the divergence limit to recompute NMA was changed
from 0.1 Å to 1 Å to speed up the process. For detailed timings, see Supplementary
Table S5.

improper structures (Yang and Sharp, 2009). Similar results were
observed with RNA including excellent geometry maintenance. The
final mean deviation was higher than in proteins, 1.34 Å, but such
difference is irrelevant considering the different nature of data. In
any case, the results validate the use of low-frequency modal space
to generate feasible pathways also for the RNA transitions (see
Supplementary Table S5 for detailed results).

The test was repeated with different CG models obtaining similar
pathways and scores. We only detected fewer clashes with finer
grained models, which could be a positive effect of considering more
detailed representations. Surprisingly, when randomly removing the
50% of the dihedral angles in each NMA calculation, the final
conformations and scores are the same as considering all the Dofs.
Even more, when freezing 90% we still had reasonable results with
RMSDs close to 1 Å but with more clashes. Analogous results have
been obtained with other CG models and with RNA (Table 3). Note
that this removal is not permanent, the subset of dihedrals to be
fixed is randomly selected every NMA calculation (∼100 times
during the trajectory). Thus, all dihedrals had a chance to move
preventing critical levels of stiffness. Nonetheless, clear differences
were observed for calculation times. The mean time to obtain a
trajectory using the Cα model was only 5.1 min, whereas employing
C5 or HA required 20 and 35% more time, respectively. Although
computation of the plausible transitions was quick, 4- and 8-fold
speed ups have been obtained by fixing 50 and 90% of dihedral
angles, respectively. In addition to the efficiency gains of this CG
procedure, the squared reduction of memory cost with the fixed DoFs
greatly extends the applicability to larger systems.

iMorph is a proof of concept to test the sampling power of
IC-NMA and to check the structure maintenance in an iterative
modeling process. Even at this point of development, it already
has advantages over Cα CG-NMA approximations: extended
efficiency, larger size coverage and covalent structure preservation.
Nevertheless, there are more sophisticated and powerful alternatives
for fast motion planning including coarse-graining dynamics (Weiss
and Levitt, 2009), Monte Carlo (Borrelli et al., 2005) or path
planning methods (Barbe et al., 2011). Despite these methods being
more realistic, there is room for improving their ability to describe
large collective changes by incorporating IC-NMA.

3.4 Conformational sampling
We include a tool (iMC) to explore the low-frequency essential
space of a given structure by activating its first modes
according to Metropolis criterion. This procedure generates variable
modal displacements that can be applied to the structure for
producing a pseudo-trajectory. A sampling exercise for generating
conformational ensembles around known structures is presented in
Table 4 (and Supplementary Table S6). In this case, we employed
a dataset of 10 proteins that undergo domain closure upon ligand
binding. This dataset has been used recently for testing a protocol
to predict holo structures from apo conformations (Seeliger and de
Groot, 2010). Our intention was not to reproduce this sophisticated
protocol, which includes biased conformational sampling, docking
and molecular dynamics but rather to illustrate the sampling power
of our iMC approximation. For each test case, an ensemble of 1000
conformations was generated based on the apo structure using only
the first 5 low-frequency modes. Note that few modes encoded
the majority of the conformational change (δ5>0.90). The closest
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A

B
Apo RMSD [Å]

Fig. 2. Conformational sampling comparison of a biased (red circles) and an
unbiased (blue circles) ensemble generation performed with iMC from the
apo structure of the osmo-protection protein (A). The overlay of apo (orange,
PDB 1sw5) and holo (yellow, PDB 1sw2) structures is shown (B, left). On
the right, the holo structure was superimposed with the closest conformation
(cyan) found in the biased ensemble.

Table 4. IC based Monte-Carlo conformational sampling

Unbiaseda Biased Rg ±1%b Clashesc %rout Molprobity

RMSDd δe
5 Minf <1.5 Åg <2 Åh Min <1.5 Å <2 Å I A B I A B I A B

4.04 0.94 1.28 1.6 6.6 1.08 16.2 33.7 12 40 45 0.3 0.3 0.3 2.0 2.5 2.5

aUnbiased ensembles were generated using the default parameters of iMC from apo
conformations with Cα model and ED refined potential.
bConstraining the sampling to obtain conformers deviated ±1% from the holo Rg.
cMolprobity scores of the unbiased sampling for: (I) initial structure; (A) average
of 1000 conformers and (B) average of conformers <2 Å Cα-RMSD from the holo
structure. Similar values have been obtained for the biased sampling (data not shown).
dMotion amplitude (Cα-RMSD) between apo and holo conformations.
eCumulative overlap of the five lowest energy modes as defined Table 1.
f Minimum Cα-RMSD to the target holo structure found in the ensemble.
g−hPercentage of models with a Cα-RMSD from holo structure <1.5 or 2 Å.

conformation within the ensemble was 1.28 Å apart on average to the
bound conformation. In addition, 1.6 and 6.6% of the conformations
were <1.5 and 2.0 Å, respectively. These results are interesting,
especially taking into account that the initial apo structures were
deviated 4.04 Å from the holo structures. Imposing constraints can
enrich the sampling. For example, if the sampling is biased toward
structures within ±1% of the holo radius of gyration (Rg), 34% of the
1000 conformations are <2 Å and close to 16% are <1.5 Å. These
sampling differences are depicted in Figure 2 for an illustrative case.
Figure 2A shows how the Rg constraint biases the RMSD toward

the holo structure. The biased ensemble (red) samples a subset of
the unbiased conformational space (blue) that was much closer to
the holo structure. As before, the geometric quality is reasonably
maintained with only 40 clashes on average. Also, few seconds were
needed to generate an unbiased ensemble and <4 min for the biased
case. This small cost and the quality of the ensemble conformers
already suggest their use as starting points for other simulation
protocols.

4 DISCUSSION
We presented an efficient NMA tool for both protein and nucleic acid
structures that considers the canonical dihedral angles as variables.
The implicit maintenance of the covalent structure preserves the
model geometry and minimizes the potential distortions of CC-NMA
approaches. The robustness of the proposed approaches for modeling
flexibility has been tested in diverse contexts. We showed how the
low-frequency modes computed with iMode are well correlated
with the protein collective transitions observed between different
known conformers. Notably, similar correlations have been obtained
with RNA transitions, corroborating the usefulness of NMA for
estimating collective dynamics. Although there are several reports
of CG-NMA and nucleic acids (Feig and Burton, 2010; Fulle and
Gohlke, 2010; Orozco et al., 2008; Skjaerven et al., 2011; Yang
et al., 2006), to the best of our knowledge, this is the first time
that a validation of IC-NMA with a representative set of RNA
transitions has been performed. We have proven the utility of our
approximations for generating plausible conformational pathways
between protein and RNA transitions or for producing ensembles
from protein apo structures using only the first low-frequency
modes. Our results point out the sampling power of NMA to
provide reasonable and rather inexpensive direct view of the relevant
conformational space even at different CG levels. Simplified
models will be especially useful to expand the conformational
search capabilities to larger macromolecular systems in commodity
hardware. Proteins up to 7500 residues (or nucleic acids ∼3000 nt)
can be analyzed with iMod in a 32-bit PC. Furthermore, in 64-bit
machines the size of the biological system is only limited by the
available RAM. For example, the NMA of the 3.2 mega-Dalton
CCMV capsid (28 620 residues) will require ∼25 GB of RAM. The
size of any of these systems is out of the scope of CC-based NMA
methods that can only approach them with much more aggressive
simplifications. An effective CG approximation has been revealed
by randomly removing a large fraction of the dihedral angles from
NMA calculations. This simple procedure extends even more our
application range to huge size systems as CCMV in standard PCs
(see Supplementary Material). The overall efficiency gain is also
reflected in the computation times. IC approaches are always faster
than CC, and the gain grows cubically with the number of pseudo-
atoms considered in the representation. Even in the simplest Cα
level, the covalent backbone is maintained, which naturally reduces
the potential distortions produced when the structures are displaced
along the modes with CC-NMA. Structural quality is preserved
even in the large iterative processes of generating pathways or
ensembles. In addition, maintaining the backbone covalent structure
greatly simplifies the process of transferring reduced models to full
atomic coordinates, which is a common requirement in modeling
and structural refinements.
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As any other NMA-based approach, conformational changes
far away from native structure or other non-linear dynamics
behavior cannot be properly described. Since the major sources
of anharmonicity are related to high-frequency side chain dynamics,
limited coverage to local motions is expected by the approximations
presented here. In these cases, detailed atomics simulations are
preferred. Nevertheless, being able to predict the collective intrinsic
motions at reduced costs is valuable for both understanding
the functional conformational changes and introducing flexibility
into the molecular modeling applications, especially for large
systems. We are currently working in these directions, and we
have just successfully introduced the iMod procedures for the
flexible fitting of large macromolecular conformational changes into
electron microscopy 3D reconstructions (López-Blanco,J.R. et al.,
manuscript in preparation).Additional methodological work is being
performed to extend the applicability and efficiency of our current
approaches using parallelization techniques. Future efforts will be
focused on the elastic network optimization of our CG models
using atomistic MD simulations (Orellana et al., 2010). Finally,
the progress of this type of methods with nucleic acids (Fulle and
Gohlke, 2010; Orozco et al., 2008) is also a promising research area.
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