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Fig. 4. Multisurface ligand recognition is common to NAIPs. (A) Full-
length 6myc-tagged L. pneumophila FlaA, or variants with the indicated
residuesmutated to alanine,were transduced into BMMsby usinga retrovirus
marked with IRES (internal ribosomal entry site)–GFP.Transduction efficiency
was assessed by flow cytometry for GFP expression at day 4. Failure to
transduce B6 BMMs, as compared with transduction of Nlrc4–/– BMMs, is
indicative of NAIP activation (5). Naip5–/– BMM responses to FlaA are

NAIP6-dependent (22). (B) Transduced Nlrc4–/– BMM lysates were
probed for FlaA expression by anti-myc IB. (C) Full-length 6myc-tagged
S. typhimurium PrgJ, or variants with the indicated residues mutated to
alanine, were transduced into BMMs as in (A) to assess NAIP2 recognition.
(D) Constructs were transfected into human embryonic kidney–293 Tcells,
and lysates were probed for PrgJ expression by anti-myc IB. Results are
representative of at least two independent experiments (n = 1 per trial).

Fig. 5. Simultaneous mutation of multiple recognition
motifs is required to evade NAIP5 or TLR5 recognition
but disrupts flagellar motility. (A to C) The indicated
mutations were introduced at the endogenous FlaA locus of
L. pneumophila strain LP02. (A) BMMs were infected with
L. pneumophila strains at multiplicity of infection (MOI) = 3,
and cell death was measured by lactate dehydrogenase
(LDH) release at 4 hours. The dashed line indicates Nlrc4-
independent LDH release in wild-type LP02 infection.
(B) NAIP5- and FlaA-dependent restriction of L. pneumophila
replication in BMMs. BMMs were infected at MOI = 0.01,
and colony-forming units (CFU) were measured at the
indicated time points. hpi, hours post-infection.
(C) L. pneumophila were classified as motile (Y) or
nonmotile (N) on the basis of observation of swimming
runs. Bacteria were vortexed to dissociate cell-surface
flagella, and supernatants were analyzed by Coomassie
stain. (D to F) S. typhimurium strain LT2DfliCDfljAB was
transformed with an expression vector encoding wild-type
FliC or the indicated variants. (D) Overnight culture
supernatants were incubated 6 hours with CHO cells
expressing HsTLR5 and a nuclear factor kB (NFkB)
luciferase reporter. Reporter cells were analyzed for
luciferase expression. (E) Diameter of colonies incubated on
0.4% agarose plates for 8 hours. (F) Culture supernatants
and the supernatants of vortexed bacteria were analyzed
for the presence of secreted or cell-dissociated flagellin,
respectively. Results are representative of at least three
independent experiments (error bars, SD; n = 3 biological
replicates). *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001; ANOVA
(analysis of variance) comparing across BMM genotype
[(A) and (B)] or against wild-type FliC [(D) and (E)]).
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and NAIPs (21), at the interface with microbial
ligands (36). Thus, we propose thatmultisurface
recognition is one strategy in the arsenal deployed
by hosts to counteract the intrinsic advantage
held by large populations of rapidly evolving path-
ogens in their “arms race” with eukaryotic im-
mune systems.
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for NAIP5 evasion compromise bacterial fitness.
symmetrical ''wheel.'' Furthermore, NAIP5 recognizes multiple regions of its ligand, and mutations of flagellin that allow 
NLRC4 recruitment. Steric clash results in a partially open structure, in contrast with previous descriptions of a closed
when NAIP5 binds flagellin, it changes conformation, which triggers a rotation in monomeric NLRC4, catalyzing further 

 used cryo-electron microscopy to visualize an assembled ligand-bound inflammasome. They find thatet al.Tenthorey 
enormous signaling complexes (inflammasomes), which promote pro-inflammatory cytokine secretion and cell death.
innate immune response to pathogens. After binding microbial ligands, assorted NLR family members assemble to form 

The NLR (nucleotide-binding domain leucine-rich repeat) proteins are a key intracellular component of the early
Another spin at the wheel
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