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Abstract

The selective properties of a population formed by RNA-like molecules (replicators) with catalytic capabilities are analyzed
in an extended system. The population evolves in a closed reactor and is kept far from equilibrium by means of a recycling
reaction that transforms the degradation products of the replicators into energy rich monomers, from which the species are
built up. In the limit of infinite diffusion, for a particular set of parameters the system exhibits tristability between chaos
and two fixed points. Under this setup, numerical techniques are used to prove the formation of spatial patterns when finite
diffusion forces are taken into account in one- and two-dimensional spaces. Finally, the relevance of these results is discussed

within a prebiotic framework.

1. Introduction

The hypothesis that assumes that the first prebi-
otic material could be mainly formed by RNA-like
molecules (here referred to as replicators) has ob-
tained wide support after the discovery of the catalytic
activity of some RNA molecules (ribozymes) [1-3].
These RNA-like molecules with unspecific catalytic
capabilities could have formed ensembles of species,
the so-called catalytic networks.

Although the evolution of these networks has been
extensively studied from a theoretical point of view
over the last two decades, most of the work has been
focused on the analysis of their dynamics under spa-
tially homogeneous conditions [4-7]. Less attention
has been paid to the role of diffusion on the behavior

! E-mail: PABLO@solea.quim.ucm.cs
2 E-mail: JUANCA @solea.quim.ucm.es
3 To whom correspondence should be addressed.

of these prebiotic models (see, for instance, Refs. [8-
10]). However, it is well known that diffusive forces
may play an important role on the dynamics of physi-
cal systems (and probably they might occur in the pre-
biotic soup) [11-13]. Therefore, it ought to be taken
into account in mathematical models.

Within the framework of a RNA-world, in this paper
we attack the problem of pattern formation in one of
the theoretical models proposed to study the behavior
of catalytic networks [14]. This model is schemati-
cally described in Fig. 1. It is a closed system (i.e.
only energy can be interchanged with the surround-
ings) where activated material (nucleotides) react to
build up self-replicative units following preestablished
rules. These energy rich monomers are regenerated
from the by-product of the reaction (obtained mainly
as the result of the hydrolysis of the sélf—rep]icative
species) by means of a recycle mechanism (basically
due to an external energy source, e.g. sunlight). The
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Fig. 1. Kinetic scheme of the model. The meaning of the different
reactions is: (i) Each specie I;, in the presence of the substrate A,
selfreplicates noncatalytically with a rate a;. (ii) The species /;
catalyzes the selfreplication of the species J; with a rate kij in the
presence of the substrate. (iii) A species I; degrades in B with
a rate &;. (iv) The byproduct of the degradation, B, is recyclated
in energy high substrate, A, with a rate y.

closure of the system directly imposes a selection pres-
sure on the population.

The model is described by the following multidi-
mensional partial differential equation:

xi(r) =xi(r) [01(61! + Zkﬁxj(r)> - 6,]
Lo
+eDAxi(r) i=1,...,n,

a(r) =yb(r) - [a(r)(Za.-mr)
+ZZ kj;x,v(r)xj(r)ﬂ + eD,Aa(r),
i

b(r) =5 &ixi(r) —yb(r) + €Dpdb(r), (1)

where x;, a and b are the concentrations of the self-
replicative units, activated and inactivated residues, re-
spectively. The meaning of the kinetic constants are
explained in Fig. 1. € may be understood as a dimen-
sionless parameter that scales the reaction-diffusion
process. Moreover, it is assumed that the diffusion
coefficients are spatial-independent. As usual, A =
ot /dri%, v being the spatial dimension. It is easy
to see that system (1) verifies

/a(r) +b(r) + Y x(r) dr=c, (2)
S i

¢ being the total concentration of the system. S is the
total are of the system.

The local dynamics of this model (obtained after
removing the diffusion terms) has already been anal-

ysed in a relevant but restricted situation: a system
formed by cyclically linked species (a hypercycle)
[4,14]. Perhaps the most relevant property of this spe-
cial network is that it allows the coexistence of all
the species involved in the organization. Moreover,
whereas for networks formed by less than four species
the fixed point of coexistence is asymptotically stable,
for networks larger than four this fixed point becomes
unstable appearing surrounded by a cyclic limit. This
fact has special significance when a diffusive process
is taken into account (see Ref. [9] and the analysis
using cellular automata presented in Refs. [8,10]).
In the next section, we shall show that this dynamic
system exhibits chaotic dynamics for a particular set
up when diffusive forces are not taken into account.
This particular choice will be used as a starting point
for the spatial analysis. It is already well known that
chaos offers a great variety of behaviors that could be
specially reflected when spatial degrees of freedom are
considered [15,16]. Section 3 is devoted to demon-
strating the formation of spatial inhomogeneities in
the extended system under this chaotic local dynam-
ics. Finally, we discuss the possible role that these
patterns could have had within the prebiotic scenario.

2. Local dynamics

When, either the system is well stirred (diffusion
coefficients tend to infinity) or the diffusion coeffi-
cients almost vanish, the spatial behavior of the system
is drastically simplified since (1) reduces to a set of
ordinary differential equations. Fig. 2 shows the par-
ticular model that will be used in the numerical anal-
ysis to prove the existence of chaos. The values of the
catalytic constants are shown in this figure. In addi-
tion, the following set of parameters will be used in
all the simulations

a[=l, i=1,2,3,4,
8;=0.1, i=1,2,3,4,
'y=1_ 3

For this particular setup it can be proven that there
are 17 possible fixed points, corresponding to the dif-
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Fig. 2. Schematic plot of the reduced model analysed in the text.
The numbers in the arrows represent the particular values of the
catalytic constants k;;.

ferent coexistence states [6] and the state in which
the replicator concentrations is null, i.e. a = 1. Apart
from them, other attractors of higher dimension may
exist, e.g. limit cycles or strange attractors. The exis-
tence and the stability properties of these steady states
depend on the value of all kinetic constants and in
particular on the catalytic constants, k;;. A bifurcation
diagram can be made by adding a constant, u, to the
first entry of the catalytic matrix, k1, which will be
used as a bifurcation parameter.

The numerical analysis of this model has proven
that chaotic dynamics is reached for u = 0, through a
typical Feigembaum cascade (doubling period bifur-
cations) [17], similar to that shown in Fig. 3 of Ref.
[18]. A deeper study demonstrates that the strange
attractor is almost contained in a two-dimensional
subspace, showing a Lyapunov dimension around
2.05. This chaotic behavior is apparently similar to
the strange dynamics reported from the analysis of
other related models [ 18,19]. Again, this coincidence
between these results corroborates a statement pre-
viously conjectured by Schuster and Sigmund [20]:
models based on either the constant organization re-
striction (CP) or the continuous stirring tank reactor
(CSTR) and the recycle model yield to the same
behaviour when the concentration of the catalytic
species is high enough. In fact, in the latter the sys-
tem behaves in a subspace characterized by almost
constant values of the activated and non-activated
monomers, a and b, respectively.

Fig. 3. Schematic location of the steady states for the particular
setup described in Fig. 2. Black and grey balls represent stable and
unstable fixed points, respectively. The chaotic trajectory surrounds
the unstable fixed point {1234}.

Another aspect that will have special relevance in
the analysis of the spatial behavior of the system is the
possibility of displaying multistability among different
states. In Fig. 3, a global picture for the case . =0
is schematically drawn. As can be seen, in addition to
the chaotic attractor, there exist two more stable fixed
points: one in which all the species vanish except the
third, and one that implies the coexistence of species
one and four.

3. First evidences of pattern formation

Once the basis of the model has been translated to
mathematical symbols, the main purpose of theoreti-
cians is to find analytically the possible solutions of
the corresponding expression of (1) for the reduced
model and prove their stability properties. Unfortu-
nately, due to the high complexity of the model, as a
first approach, only numerical techniques are useful
to analyse this reaction-diffusion problem. Essentially,
the numerical algorithm reduces the model to a multi-
dimensional coupled map lattice, i.e. a discrete space-
time dynamic system [21]. This discret formulation
has been extensively used to carry out a deep compar-
ison between the local dynamics and the global spatial
behavior [22,23].

To perform this analysis, henceforth we will fix the
parameters that define the local dynamics to focus at-



P. Chacén. J.C. Nuno | Physica D 81 (1995) 398-410 401

tention on the behavior that is brought about when the
diffusion coefficients are varied. The system dynamic
is substantially simplified if we consider that all the
catalytic species have similar molecular weight and
tertiary structure, and therefore, similar diffusion co-
eficients, i.e. Dy, = D for all i = 1, 2,3, 4. Moreover,
we assume that all monomers (activated or not) also
have similar values for the diffusion coefficents, D, =
Dy, = d. These monomers are small subunits that ob-
viously diffuse faster than the larger biopolymers. So
that it is assumed that d > D. Through all the simu-
lations the value of the reaction-diffusion scale factor,
€, was arbitrarily chosen to be 1072 For the spatial
coupling, A, we take the following scheme:

Ay(r) =3 " y(j) —ny(r), (4)
j

where n is the number of closest neighbors (2 in the
1D-simulations and 4 in the 2D-simulations).

To define completely the problem, both initial and
boundary conditions must be specified. Initial condi-
tions are randomly chosen in such a way that the local
concentration of the sum of all the species is equal
through the whole space, and arbitrarily fixed as 1, i.e.

/a(r) +b(r)+ > xi(r) =1, (5)

v

V being any infinitesimal volume. In the simulations
this condition means that the total concentration of
all the species is fixed as 1 in each cell. Two phys-
ical meaningful boundary conditions are used: peri-
odic conditions, that mimic a vast prebiotic scenario
in which the effect of the boundary is negligible, and
non-flux boundary conditions, which would arise in a
real scenario when there is no interchange of material
with the surroundings (as occurs in this model).
Although the most realistic situation to be consid-
ered is a system embedded in a three-dimensional
space, there are many cases in which one or two spa-
tial variables can be neglected. That is the case, for
instance, when the early biochemical reactions take
place within a capillary or on the surfaces of rocks.
Therefore, the analysis of the system dynamics in one

Random Patterns
Uncorrelated Chaos
Correlated Chaos
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d

Fig. 4. Schematic representation of D versus d for the 1-dimen-
sional domain. Three regions may be distinguished: homogeneous
correlated chaos (black region), the heterogeneous uncorrelated
chaos (dark grey region) and a region where random patterns
appear (clear grey region).

and two-dimensional spaces can give relevant insights
about the actual behavior of this kind of systems.

One-dimensional space

When considering the diffusion coefficients as bi-
furcation parameters one immediately thinks of the
following two obvious limits: on the one hand, at the
no-diffusion limit the final state only depends on the
initial conditions. There is no way to extract the sys-
tem from the local attractors. On the other hand, when
diffusive forces tend to infinity the system becomes
totally mixed, and evolves homogeneously (all the lat-
tice points are in the same state at the same time).
Because the strange attractor basin is larger than the
attraction basin of the other two fixed points, the final
state is likely a spatial coherent chaotic behavior (this
fact has been observed in all the simulations).

How does the system behave between these two
limits? In Fig. 4, a schematic diagram of the different
system behaviors are shown as a function of the ratio
between the diffusion coefficients of the replicators,
D, and the monomers, d. For D > 1072, and indepen-
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Fig. 5. Temporal evolution of the concentration of /) in a 1-D do-
main with pertodic boundary conditions. The diffusion coefficient
of the monomers is d = 1072 in all the cases and the diffusion
coefficient of the replicators are: (a) D = 10~2 (homogenous cor-
related chaos) (b) D =10~4 (heterogeneous uncorrelated chaos)
(¢) D =10~% (random patterns).

dently of d, the system becomes homogeneous, evolv-
ing chaotically with time (see Fig. 5a). Each lattice
point evolves within the chaotic attractor, totally syn-
chronized with the rest; therefore, the system is in a
completely homogeneous phase. The Temporal Power
Spectra [TPS] [17] for D = d = 1072 is shown in
Fig. 6a. A broad-band spectrum appears, as occurs in

the local dynamics, proving the chaotic structure of
the system. It is worth to compare this behavior with
that obtained from the analysis of a coupled map lat-
tice model with local interactions, where the homoge-
neous state is unstable. A possible reason for this con-
tradiction is that, in this example, the coherent lenght
is of the order of the system size. In fact, as the sys-
tem lenght increases, this spatially homogeneous and
temporally chaotic state disappears in agreement with
the coupled map lattice model.

When 1072 > D > 1075, and 107! > d > 1073,
the system still evolves chaotically but now the cells
are not in phase (see Fig. 5b). This arrangement does
not yet enable the system to develop a coherent spatial
patterns. Nevertheless, the main basic modes are al-
ready present in the spatial dynamics, as can be clearly
seen in the TPS for the case D = 1074, d = 1072
(Fig. 6b): the broad-band typical of chaotic dynamics
still remains, although two sharp peaks, corresponding
to oscillations of periods two and three, are present.
This behavior may be interpreted as just the transi-
tion from the previous homogeneous spatial behavior
to the formation of spatial patterns. Effectively, as D
decreases (D < 1073), the diffusive forces are not
enough to get the system away from local attractors
and therefore, depending on the initial conditions the
system brings about a particular stable spatial pattern
(see Fig. 5¢). As an example, in Fig. 6¢c, we show the
TPS for D = 107 and d = 1072, These spatial struc-
tures remind the frozen random state studied in cou-
pled map lattices [33]. Contrary to the previous cases,
now there is an important contribution of frequencies
that correspond to high order periods. This fact is a
consequence of the coexistence of different attractors
such as chaos, chaotic bands and fixed points ( which
appear perturbed by diffusive forces) (see Fig. 7).
The contribution of the chaotic attractors and chaotic
bands to the temporal power spectra is evident through
the different subharmonics and small broad-band spec-
trum that still surrounds the sharp peaks (see Fig. 8)
[24]. It is interesting to remark that these sharp peaks
have been related with strange attractors that have an
inner hole (like the Rossler attractor) [25]. However,
attractors containing fixed points like that we are deal-
ing with do not have this property and therefore their
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sponding to the three cases illustrated in Fig. 5, respectively. The

TPS in (6d) corresponds to the situation D = d = 10~5. The power spectra were obtained from the temporal series of the species /; and
were calculated using a Fast Fourier Transform (FFT) from 8192 time steps after running out two million transients points, and then

averaged from 50 lattice points.

presence in the TPS can only be explained by the for-
mation of different chaotic bands.

These patterns, once formed, remain frozen al-
though locally they evolve governed by the corre-
sponding local attractor. They are characterized by
regions that have got a high concentration of the
replicators (therefore the energy rich monomers are
quickly consumed and there is a high production of
energy low monomers), separated by other regions
with a low level of replicators (with a higher level of
energy rich monomers). Moreover, the size of these
aggregates depends on the initial conditions and varies
with the ratio between D and d (this fact is well il-
lustrated in Figs. 12a and 12b for the 2-dimensional
case).

Another interesting aspect is that this model exhibits
spatial patterns even when equal diffusion coefficients
are used (compare the TPS drawn in Fig. 6c with
that shown in Fig. 6d for D = d = 107°). This fact
is not striking since the pattern formation mechanism
is strongly correlated with the local dynamics of the
system (intrinsically non-linear), unlike the Turing
mechanism which has a global character [26].

Two-dimensional space

As in the one-dimensional situation, large values of
the diffusion coefficients (D > 10~2) drive the sys-
tem to a homogeneous state , in which all the cells
evolve chaotically in phase. As long as the diffusion
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Fig. 7. Consecutive local attractors obtained from the simulation of the system in a 1-dimensional domain (50 lattice points) with
D =d = 1073, Each plot represents the concentration of species I; versus /3. (a), (b) and (c¢) correspond to cells 19, 20 and 21,
respectively. Between (c) and (d) (cell 25) there are three cells (not shown) with very low concentration of replicators (even lower

than in (c¢)).

coefficients decrease, the system undergoes a transi-
tion to different states, all of them characterized by
the formation of complex spatial patterns (see Fig. 10,
where several 3D-plots are shown for different choices
of the diffusion coefficients).

The different features the system exhibits when
evolving in a two-dimensional space are schemat-
ically shown in Fig. 9. As may be seen, for ap-
proximately 1073 < D < 107* and d > 5 x 107!
almost symmetrically distributed aggregates appear
(see Fig. 10a). It is interesting to remark the way the
system reaches these stationary states. As an exam-
ple, in Fig. 13 we show a snapshot taken before the
system has arrived to the final state. In order to get
a stable disposition some of the clusters divide into
two separate aggregates. It seems that, for the system

to be spatially stable a fixed number of cells evolving
almost coherently is needed. As D decreases even
more (D < 10™*) keeping d > 10~!, a random pat-
tern characterized by a more asymmetric setting of
the aggregates appears (Fig. 10b).

As in the 1-dimensional space, the spatial distribu-
tion of the aggreagates can be again explained as the
result of the interaction among different attractors. The
system is organized in such a way that regions with
a high concentration of replicators are separated from
lower concentration ones, and the boundaries between
the clusters remain almost constant in time. However,
each aggregate behaves governed by the local dynam-
ics (either chaotic or asymptotically stable). Cluster
size increases as d increases and decreases as D de-
creases as can be seen comparing Figs. 10a and 10b. It
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in Fig. 6, these

TPS were calculated from the temporal series of 7; using a FFT from 8192 time steps.

Fig.

1-dimensional case. In addition to the homogeneous correlated chaos (black region), the heterogeneous uncorrelated chao
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turns out that in Fig. 10a all the aggregates are in an al-
most synchronized state, passing through the maximun
level of concentration at the same time (see Fig. 11).

In each cluster, the central cell (of each cluster) is
what drives the dynamics of the aggregates with a fully
developed chaos. The closest neighbors are influenced
by these dynamics and usuatly exhibit chaotic bands.
As we move to the cluster border, chaos dissappears.
On the contrary, in Fig. 10b the clusters (most of them
formed by only one cell) are totally uncorrelated: cells
within a local fixed point basin (and therefore in a
quasistationary state) coexist with cells that evolve
chaotically.

The symmetric and random patterns dissappear as
d decreases giving rise to an incoherent structure in
which each cell behaves chaotically but not in phase,
as happened in the 1-dimensional case (Fig. 10d). A
diffuse interphase (mixed pattern) between this orga-
nization and the totally uncorrelated chaotic pattern
exist (Fig. 10c). This boundary also separates the ran-
dom pattern from the totally correlated chaos (homo-

1)

22208

15
20 o5
Lattice

30
35 50
0 45 [

Fig. 11. 3-dimensional plot of the concentration of species I
versus space after 2 million steps of row 25 of the 2-dimensional
domain with periodic boundary conditions shown in Fig. 10a. As
occurs Fig. 5c for the 1-dimensional model, we see clearly that
some of the cells are coupled evolving in a complex fashion.

geneous situation) through D = 1073d=10""

4. Discussion

In this paper we have studied the spatial dynam-
ics of a population formed by selfreplicative species
evolving in a closed system by means of a well known
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Fig. 12. Snapshots of the total concentration of the replicators at
time 2 x 106 in a 2-D domain with non-flux boundary conditions.
(a) D=10"3,d=5x10"" (b) D=10"% d = 1. Red and
blue represent the highest and the lowest concentration levels,
respectively. Notice the different size of the clusters.

theoretical model [14]. P. Schuster and K. Sigmund
[20] conjectured that this model is, under some con-
ditions, equivalent to two other models widely used in
molecular evolution when diffusion is not considered:

Fig. 13. Snapshot of the total concentration of the replicators at
time 1 x 10% in a 2-D domain with non-flux boundary conditions
and D = 103, d = 5. As in Fig. 12, red and blue represent the
highest and the lowest concentration levels, respectively.

the CSTR (Continuous Stirring Tank Reactor) model
and the CP (Constant Population) model. These two
models seem to be closer to an experimetal setup but
they present a major shortcoming when including dif-
fusion [27]. On the contrary, the model studied here
allows a better analysis of the pure diffusive features
of the system since no flow of matter with the sur-
roundings exists.

In the homogeneous limit, we have demonstrated
the existence of chaotic dynamics for a situation al-
ready considered in a previous model under a CP re-
striction [6,18]. Moreover, the global picture is en-
tirely similar to that already described. Three stable
attractors coexist: two fixed points, in which two or
three species are not present, and a strange attrac-
tor that implies the coexistence of the four species.
The concentration of both the rich energy monomers
and the byproduct of the degradation reaction remains
practically constant.

The same set of parameters that defines these lo-
cal dynamics was used when diffusion was taken into
account. The choice of this setup was guided by two
main considerations: firstly, from a theoretical point
of view, the coexistence of two stable fixed points
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with a chaotic attractor could give rise to an interest-
ing spatial behavior. Secondly, the chaotic dynamics
allow the system to interact efficiently with its envi-
ronment by changing its orbits without changing its
coexistence properties, i.e. keeping those species that
are structurally necessary. In a certain sense, it could
be said that those systems that exhibit a more ordered
behavior would not be able to respond adequately to a
fluctuating enviroment. Then, by showing an inherent
chaotic behavior the system can respond to diffusive
forces in a very complicated way, as has been reflected
in the great variety of patterns that have been resolved
in our simulations.

Numerical integrations were carried out by dis-
cretizing both time and space. So, the system has
been reduced formally to a multidimensional coupled
map lattice. In the bidimensional problem, the space
is discretized in such a way that there are only two
directions, i.e there is no diagonal diffusion. A scale
factor, €, that adequately links the time and spatial
dynamics has been introduced. The lattice size was
chosen to be small enough to avoid numerical errors
but at the same time large enough to reduce the time
of the simulations. So, each of the spatial axes was
partitioned into 50 cells. Nevertheless, because in
some situations large gaps of concentration are cre-
ated in short distances the integration step might be
decreased so low that the real time needed to get a
quasistationary state was enormous. To avoid these
troubles a more simplified model would be desirable
(e.g. a 1-dimensional mapping as suggested by P.
Schuster and P.E. Phillipson [28]).

To simplify the analysis we assumed that all the
replicators have the same diffusion coefficient, D, as
well as the monomers, 4. This reduction has allowed
us to draw a diffusive phase space as shown in Figs. 4
and 9. It must be remarked that the values of the dif-
fusion coefficients chosen in the simulations are com-
pletely arbitrary as well as the rest of the reaction pa-
rameters. Thus, a comparison with real diffusion co-
efficients of biological molecules is not evident.

The study has been carried out in a space of one
and two dimensions. As was already pointed out these
situations apart from being mathematically relevant,
allowing an acceptable numerical analysis, could be

used to mimic some interesting biological situations.
We have shown the influence of diffusive forces on
a set of chaotic attractors that coexist together with
different stable fixed points. Whereas for large values
of the diffusion coefficients all cells, independently of
the initial conditions, are affected by chaotic dynam-
ics (the system gets a coherent phase), as long as
diffusion coefficients decrease (the exact dependence
on D and d is explained above) diffusion is not able
to mix up the initial concentration and its main ef-
fect is to cause the splitting of chaotic attractors. This
fact brings about a spatial arrangement among differ-
ent attractors that is ultimately responsible for the for-
mation of the cluster-like pattern observed. However,
this mechanism cannot explain the symmetries that ap-
pears in the interphase between the correlated chaos
state and the random pattern state in the 2-dimensional
space.

The stability of these patterns is also interesting.
Since no analytical analysis has been done, any sta-
bility condition can only be derived from numerical
considerations. In this sense, we may say that in all the
simulations reported in this work the observed patterns
once formed remain after a very long period (about 2
million integration steps). Obviously, that is not proof
of stability but it gives an idea of the strength of the
spatial organization.

This section would be incomplete without a discus-
sion of the dependence on both the initial conditions
and boundary conditions. Concerning the first, all the
simulations have been initialized with a random local
distribution of the molecular concentration fixed at 1
throughout the system (so that there is not large devi-
ation for a homogeneous global distribution). More-
over, this initial setup allows a straightforward com-
parison with the dynamics of the system in the limit of
no diffusion. Two different kinds of boundary condi-
tions have been used. On the one hand, avoiding wall
effects, we have assumed that the system is repeated
periodically. On the other hand, non-flux boundary
conditions (Neumann conditions) enable us to study
the influence of the surroundings barriers on the sys-
tem behavior. No measurable differences have been
noticed, i.e. the situations described above appear in-
dependently of the boundary conditions used. How-
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ever, a more detailed study would probably detect rel-
evant differences on the dynamics.

The behaviour depends strongly on the network
architecture. In previous papers, it has been demon-
strated that a population of replicators formed by
species cyclically linked (a hypercycle) evolving ei-
ther under a CP restriction [8] or on a recycle system
[9,10] gives rise to spiral patterns where one or more
spirals coexist in the system. Following these authors,
these models show very good stability properties,
and they do not allow the formation of aggregates of
the kind described in this work. Nevertheless, these
results have been questioned recently by Cronhjort
and Blomberg by analysing a two-dimensional par-
tial differential equations model [32]. Undoubtedly,
this contradictory conclusions should be solved in
order to get a right understanding of the theoretical
relationship between reaction-diffusion models based
on partial differential equations and those based on
cellular automata.

Since M. Eigen (and lately together with P. Schus-
ter) [29, 4] formulated the selection and evolution of
simple selfreplicative units in mathematical terms a
new way of thinking about prebiotic evolution came
about. After more than two decades developing the
proposed models a wide variety of mathematical con-
clusions have been proved. Among them and, maybe
because it is now based on well demonstrated empir-
ical results [30], there is one that deserves a special
mention here: two or more selfreplicative species can
take advantage of a their catalytic capabilities and co-
exist to create a new order in a higher level of organi-
zation.

These results strengthen the hypothesis of a prebi-
otic scenario where all the metabolic necessities were
carried out by RNA-like molecules. The major short-
coming of this hypothesis appears when one is tempted
to explain the origin of cellular structures from it. And
indeed, present life forms are cellular everywhere, i.c.
the genetic material is encapsulated and, therefore iso-
lated from the surroundings. Would it be possible to
explain the origin of a precellular scenario from these
RNA-like based models? At present many details are
unknown and it is difficult to suggest a plausible way
to go ahead at this stage of prebiotic evolution.

However, we think that this contribution might give
some insight in this direction. Throughout this paper
we have studied a model that mimics the evolution of
selfreplicative species in a heterogeneous medium. As
has been stated in Section 3, for particular choices of
the diffusion coefficients a process of self-organization
takes place driving the system to a state in which
high population density regions are separated by low
concentration ones. These low populated areas act as
real barriers to the transport of information carriers.
Roughly speaking, it could be said that the system has
undergone a spatial compartimentation. As has been
repeatedly stated [ 13,31] compartimentation must ap-
preciably change the selective and evolutive features
of the system. This matter will be the subject of a
forthcoming paper.
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