
http://WWW.C-CHEM.ORG FULLPAPER

Spinor Product Computations for Protein Conformations
Pieter Chys and Pablo Chacón*

Spinor operators in geometric algebra (GA) can efficiently describe
conformational changes of proteins by ordered products that act
on individual bonds and represent their net rotations. Backward
propagation through the protein backbone yields all rotational
spinor axes in advance allowing the efficient computation of
atomic coordinates from internal coordinates. The introduced
mathematical framework enables to efficiently manipulate and
generate protein conformations to any arbitrary degree.Moreover,
several new formulations in the context of rigid body motions are

added. Emphasis is placed on the intimate relationship between
spinors and quaternions, which can be recovered from within the
GA approach.The spinor methodology is implemented and tested
versus the state of the art algorithms for both protein construc-
tion and coordinate updating. Spinor calculations have a smaller
computational cost and turn out to be slightly faster than current
alternatives. © 2012 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23002

Introduction

The coordinate choice for macromolecules can have an impor-

tant influence on the efficiency of modeling techniques. Cartesian

coordinates (CC) always represent the atomic positions inside a

macromolecule relative to a three-dimensional (3D) coordinate

system and such atomic positions are always independent of

each other. CC play an important role in biomodeling as the

energy and scoring functions are most easily expressed and

evaluated. Alternatively, atomic distances, valence angles, and

dihedral angles can be used as internal coordinates (IC). IC allow

for a substantial reduction in the number of degrees of freedom,

especially when bond lengths and valence angles are consid-

ered rigid and fixed. Also, IC are more appropriate coordinates to

describe the behavior of molecules as they represent more natu-

rally molecular geometry. Molecular simulation packages such as

ICM,[1] X-PLOR[2]/CNS,[3, 4] or TINKER,[5] among others, extensively

exploit the IC advantages.[6–8] However, as CC are much more

convenient for calculating the non-bonded energy terms and its

derivatives, conversion from IC to CC is a critical step.

Efficient and fast algorithms for generating and updating con-

formations in Cartesian from IC have been studied fairly intensive

in the past.[9–15] Most coordinate methods use matrices, quater-

nions, or hybrid combinations of them.[10–13] Recently, two other

approaches have as well been proposed. The polyspherical coor-

dinate (PSC) method[14] describes the molecule as a forward

tree of bond vectors generated from the two preceding vectors

and their vector cross product. In Ref. [15], we first introduced

geometric algebra (GA) and spinors to construct and manip-

ulate polymer conformations. GA (see Supporting Information)

is closely related to the Clifford algebras but focuses on geo-

metrical interpretation instead of pure mathematics. See general

Refs. [16–18]. Spinors in GA represent efficiently rotations in 3D

space and are intimately related to quaternions from quater-

nion algebra. Here, the approach in Ref. [15] is further developed

to generate a complete framework to manipulate biopolymer

chains with spinors. We specifically apply the approach to pro-

teins and show how different IC specifications for calculations can

be inferred from the general equations. Formal approximation

has been greatly improved by reversing the order of the spinor

operator products. It is also shown how rigid body motions can

be superimposed on intramolecular motions and how the cen-

ter of mass can be calculated with the bond vectors. We also

highlight the connection between spinors and quaternions and

show how to recover quaternion equations from within the GA

framework. Finally, the approach is implemented to test its over-

performance with respect to matrix methods, the PSC method,

and the original spinor approach.
The main outline of the article is as follows. First, we develop

the approach with all basic equations. Second, the relationship
between spinors and quaternions is highlighted. Then the exper-
imental results of actual computations are presented including
comparative tests with state of the art algorithms. Finally, the
main conclusions and some prospects for future research are
given.

Theory

The current section forms the core of this article. It introduces
spinors in GA as rotational operators and explains the notation
and labeling rules here. Hereafter, it discusses how IC describe a
protein structure. Next, the results from Ref. [15] are recapitulated
and are the basis for the main derivations in this article. Finally,
rigid body motions and chain construction are treated. Readers
unfamiliar with GA are referred to Supporting Information.

P. Chys, P. Chacón

Structural Bioinformatics Group,Department of Biological Chemical Physics,

Institute of Physical Chemistry Rocasolano (IQFR),Consejo Superior de

Investigaciones Cientificas (CSIC),Calle de Serrano 119,Madrid 28006, Spain

E-mail: pablo@chaconlab.org

Contract grant sponsor: Ministerio de Educación y Ciencia of Spain; Con-
tract/grant number: BFU2009-09552; Contract/grant sponsor: Human Frontier
Science Program; Contract/grant number: RGP003912008

© 2012 Wiley Periodicals, Inc.

http://onlinelibrary.wiley.com Journal of Computational Chemistry 2012, 00,000–000 1

FULLPAPER http://WWW.C-CHEM.ORG

Introduction to spinors

Spinors are four-component units from GA which encode effi-
ciently spatial rotations. Spinors are sometimes also denoted
rotors.[14, 17–19] A base spinor R is characterized by a rotation
angle and a vector-like component, the latter representing the
rotation plane and axis. Together with the corresponding reverse
spinor R†, a pair of spinors is formed which constitutes the spinor
operator R. The reverse spinor is identical to the base spinor
except the rotation angle that has opposite sign. The action of
the complete spinor operator (pair) on a given vector rotates
this vector in space along the specified rotation axis through
the rotation angle of the base spinor. If φ denotes the rotation
angle and â the normalized rotation axis vector, the exact form
of the base spinor R = α + ιb is:

R = cos

(
φ

2

)
+ sin

(
φ

2

)
ι̂a (1)

with ι the pseudoscalar, which converts the vector basis of â to
a bivector basis. Though the rotation axis can be clearly inferred
from Eq. (1), the last three spinor components -in bivector basis-
rather encode the rotation plane than the axis itself. The reverse
spinor R† uses −φ instead of φ:

R† = cos

(
φ

2

)
− sin

(
φ

2

)
ι̂a (2)

by virtue of the trigonometric functions. Since spinors are 4-
tuples, we will sometimes represent them as (α, bx , by , bz) =
(α,b). The above equations can be compactified in the expo-
nential analogues:

R = e
φ
2 ι̂a, R† = e

− φ
2 ι̂a (3)

Using both R and R†, a vector x can be rotated:

x′ = R†xR = Rx (4)

with R the full spinor operator and x′ the rotated vector x (Fig. 1).
The notation R x in Eq. (4) is allowed since the combined action
of R and R† works as a linear operator.[16–18] Obviously, Rx is an
alternative for Ax in x′ = Ax with A being the typical rotation
matrix.

Consecutive application of spinor operators R1 and R2 to a
vector x results in x′ = R†

2R
†
1xR1R2 of which the RH side contains

two spinor products. Spinor multiplication of a spinor R1 with a
second one R2 yields a new spinor R3. The product R3 = R1R2 is
equal to[16]:

α3 + ιb3 = (α1 + ιb1)(α2 + ιb2) (5)

For completeness, αi = cos(φi/2) and bi = sin(φi/2)̂ai . The
components α3 and b3 can now be computed by[16]:{

α3 = α1α2 − b1 · b2

b3 = α1b2 + α2b1 − b1 × b2
(6)

Figure 1. Action of a spinor operator R on a vector x. The operator R performs
a rotation of x through an angle φ yielding the 1-vector x′ . A positive value of φ

corresponds to a clockwise rotation if we look along the axis of the 1-vector φâ
(right hand rule). Here φ is slightly less than +180◦ .

in which the typical dot (·) and cross (×) products from Gibbs′

vector algebra are used.[20] It is observed that α3 does not
depend on the exact order of spinor operators in the product
(R1 before R2) whereas b3 does by means of the cross product.
Consequently, the complete product is noncommutative which
corresponds with the fact that rotations in space do not form a
commutative group. By means of Eq. (6) computation of product
operators becomes trivial. Spinors resulting from spinor products
will also be denoted as contracted spinors.The same terminology
applies to the complete operators. Hence, spinor contraction is
synonymous to spinor multiplication.

Protein labeling

We label the protein backbone atoms sequentially from zero to
n, starting at the N-terminus. Bond i starts at atom i − 1 and
ends at atom i (Fig. 2). Bond vector i is denoted by bi (Fig. 3)
and the normalized vector by b̂i . Valence angle θi is located at
atom i and rotation (dihedral) angle φi corresponds to a rotation
around bond bi . A spinor i is denoted by Ri , the reverse spinor
by R†

i
, and the full spinor operator by Ri . Spinors and spinor

operators, indexed by i, always describe rotation around the bond
bi . These conventions are different from the ones in Ref. [15].
Spinor operators, constructed by backward propagation, will be
denoted Bi to distinguish them from forward spinor operators
Ri . In analogy, the base and reverse spinors are labeled Bi and
B †
i

. Furthermore, backward spinor products are abbreviated by
bracket index notation: B[k] = B1B2, . . . , Bk where Bi may be
further specified as well (e.g., Bi = B

(φ)

i
B

(θ)

i
).

The absolute position coordinate of atom i with respect to
an arbitrarily chosen Cartesian reference frame is denoted by
xi (Fig. 3). The vector �xij is the vector joining coordinates xi
and xj or �xij = xj − xi . Bond vector i can now be expressed as
bi = xi −xi−1 = �x(i−1)i . The coordinates of the side chain atoms
are in an analogous manner denoted by xk1, xk2, xk3, . . . or shortly
xkj (Fig. 3). The coordinate xk is equal to xk0 and is the starting
point of the side chain branch. The involved spinor operators

2 Journal of Computational Chemistry 2012, 00,000–000 http://WWW.CHEMISTRYVIEWS.COM

http://WWW.C-CHEM.ORG FULLPAPER

Figure 2. IC labeling of proteins. Atoms (i), bond lengths (li), dihedrals (φi),
and valence angles (θi) as well as spinor operators Ri are depicted. A blue
circle denotes a nitrogen atom, a gray one a carbon and a red one an oxygen
atom. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Figure 3. Vector labeling of proteins. Atom coordinates (xi), bond vectors (bi),
and joint vectors (�xij) are highlighted with respect to an arbitrary origin.Atom
coordinates, bond vectors, and spinor operators in a side chain are denoted xij ,
bij , and Rij with i and j the appropriate atom indices. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

are denoted Bk1,Bk2, . . . ,Bkm with corresponding dihedral angles
φk1, φk2, . . . , φkm.

Protein backbone IC set

A protein is a sequence of peptide units with a backbone formed
by a repetition of N-Cα-C traces (Figure 4). The alpha carbon Cα is
also denoted by CA below.The backbone can be characterized by
the IC set {li , θi , φi} of bond lengths, valence and dihedral angles.
This set mainly depends on the geometrical properties of the
peptide unit. In a peptide unit, starting from the N-terminus,
we have bond lengths lN-CA, lCA-C, and lC-N with corresponding
valence angles θC-N-CA, θN-CA-C, and θCA-C-N. The corresponding
protein dihedral angles[21] are ω, ϕ, and ψ . The IC set {li , θi , φi}
can be rewritten in more detail as:

{(lN-CA, θC-N-CA, ω)j , (lCA-C, θN-CA-C, ϕ)j , (lC-N, θCA-C-N, ψ)j}

with a correctly modified index j. Similarly, IC sets {li , θi , φi} apply
to side chains (-R groups) with χi ≡ φi .

Application of spinor products

The rotation of a bond bi+1 through an angle φi around the
preceding bond bi is equal to:

b′
i+1 = R†

i bi+1Ri = Ribi+1 (7)

with b′
i

the updated bond vector bi , Ri the base spinor, R†
i

the corresponding reverse spinor, and Ri the complete spinor
operator.[15] The exact forms of such Ri and R†

i
in Eq. (7) are:

Ri = e
φi
2 ι̂bi , R†

i = e
− φi

2 ι̂bi (8)

As an example, we illustrate a spinor construction in the protein
context. Let us rotate a Cα–C bond through a dihedral angle ϕ.
Since the preceding bond is the N–Cα bond, normalization of
bond vector bN-CA yields b̂N-CA as rotation axis b̂i . The angle
ϕ is clearly φi . As a result, the base spinor we seek is R =
exp(ϕ/2ι̂bN-CA) or R = cos(ϕ/2) + sin(ϕ/2)ι̂bN-CA. Changing the
sign of the last three components of the base spinor yields the
reverse spinor R†. The spinor operator R is now available.

An updated atom coordinate x′
i

can be calculated as follows:

x′
i+1 = xi + Ribi+1 (9)

Analogously, the rotation of more distant atoms j (j > i)

around bond bi can be expressed in terms of �xij = xj − xi :

x′
j = xi + Ri�xij (10)

Finally, it was derived that an atom q after m bond rotations
along the polymer chain has coordinates:

x(m)
q = xi + Ri�xij + RjRi�xjk + · · · + RpRo . . .Ri�xpq (11)

in which the atoms indexes obey i < j < . . . < p < q and
�xij , �xjk , . . . are the join vectors spanning the subscripted atom
positions. The spinor operators Ri ,Rj , . . . always correspond to
rotations around the bonds i, j, . . . and so on. Equation (11) sum-
marizes well the application of GA and spinors to conformational
manipulation of polymers as developed in Ref. [15]. A most use-
ful equation is when the number of polymer segments m is
maximal and equal to the number of bonds minus one:

x(n−1)
n = x1 + R1b2 + R2R1b3 + · · · + Rn−1Rn−2 . . .R1bn (12)

in which each bi can be thought of as �x(i−1)i to see the rela-
tionship with Eq. (11). Equation (12) offers a practical scheme to
calculate atom coordinates of a polymer structure and can be
easily applied to a protein structure.

http://onlinelibrary.wiley.com Journal of Computational Chemistry 2012, 00,000–000 3

FULLPAPER http://WWW.C-CHEM.ORG

Figure 4. IC for proteins. The dihedrals ϕ, ψ , and ω are related to the correct
bond lengths l and valence angles θ . See main text for more details.

Forwardpropagation throughproteinbackbone. The basic action
of the spinor operators in Eqs. (11) and (12) is highlighted in
Figure 5. The subsequent action of two spinor operators R1 and
R2 is considered. The net rotation of bond 3 is described by the
third term in Eq. (12), namely R2R1b3. In Figure 5, bond 2 (b2)

and 3 (b3) are first rotated around bond 1 (b1) by operator R1,
yielding the green bonds 2′ (b′

2) and 3′ (b′
3). Next, bond 3′ is

rotated around bond 2′ by spinor operator R2 to obtain bond
3′′ (b′′

3). The spinor operator R2 can only be computed whence
bond 2′ has been computed. As a result, R2R1b3 in Eq. (12) can
only be computed when R1b2 has yielded bond 2′. Consequently,
an iterative scheme is necessary to compute Eq. (12) in case of
forward propagation.

Figure 5. Forward propagation scheme to construct spinor operators R1

and R2.

Backward propagation through the protein backbone. The con-
formational change highlighted in Figure 5 can also be performed
by backward propagation through the protein backbone. Figure 6
illustrates this with the same example. Here, bond 3 first rotates
around bond 2, yielding the green bond 3′. Next, bonds 2 and 3
are rotated around bond 1. Bond 1 is unaffected by the first rota-
tion and spinor 2 can thus be constructed in advance. Denoting
a backward propagation spinor (or simply backward spinor) by

Figure 6. Backward propagation scheme to construct spinor operators B1

and B2.

B, both B1 and B2 are known in advance and B1B2 is immediately
computable without the need for B1b2.

Such backward propagation scheme can easily be extended
for the case of n − 1 bond rotations and results in the spinor
series product:

B1B2 . . .Bn−2Bn−1 (13)

By substitution of the spinor products, Eq. (12) becomes now:

x(n−1)
n = x1 + B1b2 + B1B2b3 + · · · + B1B2 . . .Bn−1bn (14)

in which the spinor products have reversed order. All of the
rotation axes are known in advance and are given by the set
{̂bi} with i ∈ [1, n − 1]. In line with Eqs. (11) and (12) it is trivial
to derive that:

x(m)
q = xi + Bi�xij + BiBj�xjk + · · · + BiBj . . .Bp�xpq (15)

in which protein backbone segments instead of individual bonds
are rotated. Equations (14) and (15) have substantial advantage
over Eqs. (11) and (12) since the reversed operator order allows
computational spinor contraction before actually rotating the
bond vectors. This results for Eq. (14) in:

x(n−1)
n = x1 + B[1]b2 + · · · + B[n−1]bn (16)

with B[i] the contracted spinors, running from subscript index
1 to n − 1. The contraction of the involved operator products
B1B2 . . .Bi to B[i] is performed by consecutive spinor products
of basic form B[i−1]Bi = B[i]. The spinor operator B[i−1] is formed
by similar recursion and ends at B[1] = B1. Starting at B1, we
have thus, for example, B[1] = B1, B[2] = B[1]B2, B[3] = B[2]B3, and
so on.

We conclude that Eqs. (14) and (15), the spinor product Eqs.
(5) and (6) together with the exact spinor forms in Eq. (8) allow

4 Journal of Computational Chemistry 2012, 00,000–000 http://WWW.CHEMISTRYVIEWS.COM

http://WWW.C-CHEM.ORG FULLPAPER

Figure 7. Contraction of spinor operatorsBi toB[i] .Gray arrows show the effect
of single spinor operations on bond vector b5 but the black arrows illustrate
the integrated effect of the contracted spinor operator B[4] .

for efficient computation of rotated bond vectors, also in case
when multiple bond rotations in the preceding chain part are
present (Fig. 7).

Side chains. A side chain can be treated as a branch from the
protein backbone. However, the side chain together with the
amino-terminal backbone part from which it branches also con-
stitute a linear backbone. This allows for direct application of
the equations derived above. We obtain thus for the side chain
coordinates xnl :

x(n+l−1)

nl
= x1 + B[1]b2 + · · · + B[n−1]bn

+ B[n−1]Bn[0]bn1 + · · · + B[n−1]Bn[l−1]bnl (17)

Herein, the Bi[j] are the contracted side chain spinors origi-
nating at backbone atom i and calculated from the individual
side chain spinors Bij with running index j. This approach can
in an analogous manner be applied to further branching with
no qualitative differences. The tree structure of the protein has
a one-to-one mapping with the tree of corresponding spinors.

Valence angle andbond length. Until now, the focus has been on
the most important IC subset for proteins: the dihedral angle set
{φi}. It is now shown how changes in bond lengths and valence
angles {li , θi} can be introduced naturally. First, Eq. (14) is written
in slightly different notation:

x(n−1)
n = x1 + B(φ)

1 b2 + B(φ)

1 B(φ)

2 b3 + · · · + B(φ)

1 B(φ)

2 . . .B(φ)

n−1bn

(18)

as to emphasize the fact that we deal with spinors performing
dihedral rotations. A change in valence angle θi for a rotation
around protein bond i corresponds to a spinor operator with as
rotation axis the normal of the plane formed by the bonds i− 1
and i. This is more clearly illustrated in Figure 8.

Figure 8. Illustration of a valence angle spinor B(θ)
i

. The spinor operator B(θ)
i

rotates the protein bond i + 1 through a valence angle change θi after which
the dihedral spinor operator B(φ)

i
executes a torsion φi of bond i + 1. Applying

B(θ)
i

before B(φ)

i
allows to construct the contracted spinor set {B[i]} in advance

of actual bond rotations.

Computationally, the rotation axis is given by normalization of
the normal vector ιbi∧bi+1. If first a dihedral rotation is performed,
the updated vector set will be needed. However, first performing
the valence angle rotation before the dihedral rotation alleviates
this problem and allows to use the initial bond vector set to
construct the normal vectors (Fig. 8). In combination with the
backward propagation scheme, the valence angle change can
consequently be calculated without changing the basics of the
already proposed method.To account in Eq. (18) for this extension,
the operators B(φ)

i
have to be substituted by B(φ)

i
B(θ)

i
and hence

we obtain:

x(n−1)
n = x1 + B(φ)

1 B(θ)
1 b2 + B(φ)

1 B(θ)
1 B(φ)

2 B(θ)
2 b3

+ · · · + B(φ)

1 B(θ)
1 . . .B(φ)

n−1B
(θ)
n−1bn (19)

in which the order of the spinor products is crucial and the
rotation axes of the spinors B(θ)

i
are given by the normalized

vector set {ιbi ∧ bi+1} (or {bi+1 × bi} alternatively). Always, the
initial bond vector set along the full protein backbone is used.
The spinor products in Eq. (19) can be contracted and this yields
in bracket notation:

x(n−1)
n = x1 + B[1]b2 + B[2]b3 + · · · + B[n−1]bn (20)

These bracket spinors are the ones that are obtained on com-
putation. Bond length changes can easily also be included since
spinor operators preserve vector lengths (linear operators). Hence,
if bond vector bi is scaled by a factor ki , Eq. (20) can be modified
to:

x(n−1)
n = x1 + k2B[1]b2 + k3B[2]b3 + · · · + knB[n−1]bn (21)

in which a single bond operator is equal to:

ki+1B[i] = ki+1B
(φ)

2 B(θ)
2 B(φ)

3 B(θ)
3 . . .B(φ)

i
B(θ)

i
(22)

in which in principle the factor ki+1 could be written as a non-
unit spinor with rotation angle equal to zero. Equation (22) thus

http://onlinelibrary.wiley.com Journal of Computational Chemistry 2012, 00,000–000 5

FULLPAPER http://WWW.C-CHEM.ORG

represents a single computable spinor which encodes all IC
changes on a bond vector in a concise and effective way.

The approach here is in line with ideas to use spinor equations
to formulate classical mechanics.[16] The importance of the set
{Bi} is not only to manipulate the bond vectors but also to
act as manipulators of the spinors themselves. Physically, each
spinor product is a rotation of the second spinor plane by the
first spinor operator. Hence, spinor contraction is equivalent to
operation of different spinor operators on a given end spinor and
making a rotational integration on that spinor before rotating
the actual bond vector. When the contracted spinor becomes
available, a single spinor operation performs the complete effect
of all spinor rotations on the given protein bond.

Rigid bodymotions

Here, proteins are considered as rigid body particles in relation
to a laboratory-frame. Equations are derived for calculation of
the center of mass and Euclidean motion of a single and multi-
ple protein chains. Moreover, it is shown how superposition of
internal and Euclidean motion can be accomplished.

Center of mass calculation. In certain types of calculation, the
center of mass X of a molecule may be needed. The construction
of inertia moments for a protein particle, for example, relies on
the relative coordinates yi = xi −X in which X is subtracted from
the absolute coordinates.[16] In Appendix A, it is shown that the
center of mass can be written as a function of the bond vector
set {bi}:

X = x0 + f1b1 + f2b2 + · · · + fnbn (23)

with the coefficient fi equal to:

fi = 1

M

n∑
j=i

mj (24)

The coefficient fi is a cumulative mass fraction coefficient. It
needs to be calculated once at the start of the computations. If
the set {bi} is updated, it follows from Eqs. (16) and (23) that

X = x0 + f1b1 + f2B[1]b2 + · · · + fnB[n−1]bn (25)

which shows that the center of mass X can be computed in
parallel with the calculation of {x′

i
}. Equation (25) is a weighted

version of Eq. (16).

Euclidean motion. Rigid body motions can always be repre-
sented by a combination of rotations and translations and, such
approach can be used to explicitly relate body-fixed CC {xi} of
a particle to their laboratory-frame coordinates {x′

i
} (e.g., coor-

dinates in absolute space). Generally, a translation t of a protein
followed by an external rotation R around a point c is equal to:

x′
i = Rxi + R(t − c) + c (26)

and such equation can be used to relate a local frame to a
laboratory-frame. The spinor operator R is a general one, not
specifically a forward or backward one, and relates the protein
conformation in the local frame to that in the laboratory-frame.
The point of rotation c is now chosen as the instantaneous center
of mass X of the protein and thereby eliminates the need to
introduce explicitly a translation vector t. Equation (26) becomes
then:

x′
i = Ryi + X = y′

i + X (27)

which shows that the transformed position coordinates can
always be calculated from the transformed relative coordinates.
We will now further show that Eq. (27) together with Eqs. (16) and
(23), form the basis for a very interesting parallel set of equations
for protein conformation calculations. To that purpose, we need
to introduce the following Einstein summation-like convention:

n∑
i=1

B[i−1]bi = B[i−1]bi

together with the introduced equivalence B[i−1] ≡ B[i−1] which
latter is only valid for this section. It is remarked that B[0] is simply
equal to the scalar one.This convention substantially compactifies
the equations that follow. It allows rewriting Eq. (16) as

x(n−1)
n = x0 + B[i−1]bi (28)

and for the center of mass X we obtain:

X = x0 + B[i−1]fibi (29)

Replacing the atom index i from Eq. (27) by j the relative
coordinates are now

y(n−1)

j
= B[i−1](hj − fi)bi (30)

with hj equal to one if i ≤ j and zero if i > j. When combining
the former equations together with the rigid body equation (27)
we arrive at:

x′
j = x0 + RB[i−1](hj − fi)bi + B[i−1]fibi (31)

which is the equation we are seeking that integrates rigid body
motion and internal motion in a straightforward manner.

Description of multiple chains. We now extend Eq. (27) to
describe multiple protein chains together. Two options exist:
the first is to express all chains in an absolute manner, the sec-
ond to work with an appropriately chosen reference chain. Both
approaches are illustrated for the case of two proteins with initial
coordinates {x(1)

i
} and {x(2)

i
}.

In the absolute approach, each chain receives an attached
bodyframe which is coupled to the laboratory-frame (absolute

6 Journal of Computational Chemistry 2012, 00,000–000 http://WWW.CHEMISTRYVIEWS.COM

http://WWW.C-CHEM.ORG FULLPAPER

space) by the appropriate spinor. Based on Eq. (27), we obtain
the following set of equations:

{
x′(1)

i
= R1y

(1)

i
+ X(1)

x′(2)

i
= R2y

(2)

i
+ X(2)

(32)

with all variables as defined before and spinor operators R1 and
R2 being distinct and valid for the corresponding chain.

In the relative approach, we seek to express the motion of
chain 2 with respect to that of chain 1. We, therefore, aim to
introduce a vector t12 and a spinor operator R12, describing the
relative translation and rotation, respectively. The equation set
(32) can be used as a basis for the derivations. The translation
vector t12 can be introduced by the substitution X(2) = X(1) + t12.
The spinor R2 in Eq. (32) can now be seen as a combination of
two rotations, namely a rotation R12 to link the body frame of
protein 2 with that of protein 1 and a second one R relating the
body frame of protein 1 with the laboratory-frame:

{
x′(1)

i
= Ry(1)

i
+ X(1)

x′(2)

i
= RR12y

(2)

i
+ X(1) + t12

(33)

Both of the foregoing equation sets can be extended for internal
motion inclusion by introducing {x(k)

i
, y(k)

i
} and either {Rk ,X(k)}

(absolute approach) or {R1k , t1k} (relative approach). Furthermore,
the introduction of internal motions [Eq. (31)] is also applicable
along the lines as presented in the previous section.

Chain construction

Equation (21) uses the existing bond vector set {bi} to obtain
new atom coordinates and constitutes the basis for an algorithm
to update protein conformations. However, Eq. (21) can also be
cast to construct a protein conformation from scratch without
the bond vector set {bi} being available. Basically, this is done
using an alternative vector set which can be arbitrarily chosen.
Consider a large line segment along the X-axis, divided in n+ 1
segments of length one. These segments have bond vectors σ1.
The last segment n+ 1 is first rotated by a spinor operator B(θ)

n

and thereafter by B(φ)
n . The B(θ)

n has either Y -axis (0, 1, 0) or Z-axis
(0, 0, 1) as rotation axis whereas B(φ)

n has the X -axis as rotation axis
(1, 0, 0). Both spinor operators establish the geometrical relation
of the bond to the preceding one (σ1 vector). Application of such
procedure for a protein by iterating toward its N-terminus yields
the absolute orientation in space of a unit bond. The rotated
σ1 vector is now multiplied with the correct bond length. All
bonds can be calculated in this way but in the implementation
the bonds are calculated in an integrated and forward manner.
The backbone is constructed starting from the N-terminus using
the recursive relations of the backward spinors. Taking the Z-axis
case for the B(θ)

n spinor operator yields for the spinors:

B(θ)
n = (cos(θ/2), 0, 0, sin(θ/2))

B(φ)
n = (cos(φ/2), sin(φ/2), 0, 0)

(34)

These spinors turn out to correspond to the quaternion forms
derived in Ref. [11]. In fact, the quaternion algorithm in that paper
is recovered here in GA. It should be mentioned that here the
construction algorithm is derived as a specific subcase of the
more general equations. In Ref. [11], further advantage is now
taken of quaternion-matrix conversion since σ1 has only one
component. Since spinors are isomorphic to quaternions[16, 18]

and GA encapsulates them, the typical matrix form derived from
quaternions is also immediately valid for spinors. This matrix is in
fact a simple rewriting of the quaternion product or the spinor
operator product in matrix format (see Appendix B):

2

q2
0 + q2

1 − 1/2 q1q2 − q0q3 q1q3 + q0q2

q1q2 + q0q3 q2
0 + q2

2 − 1/2 q2q3 − q0q1

q1q3 − q0q2 q2q3 + q0q1 q2
0 + q2

3 − 1/2

 (35)

with (q0, q1, q2, q3) the quaternion. For spinors the exact matrix
is:

2

α2 + b2
x − 1/2 bxby − αbz bxbz + αby

bxby + αbz α2 + b2
y − 1/2 bybz − αbx

bxbz − αby bybz + αbx α2 + b2
z − 1/2

 (36)

Spinor/quaternion-matrix conversion is useful when the bond
vector has components with value zero and/or multiple bond
vectors have to be rotated with the same spinor/quaternion.
In that case, the redundancy of the full geometric/quaternionic
products is avoided yielding more efficient computations.

Overall, the scheme for chain construction can be divided in
five steps: (i) Computation of spinors, (ii) application of the spinor
products, (iii) spinor-matrix conversion, (iv) bond retrieval, and
(v) atom coordinate calculation. The exact details of the scheme
will now be summarized and recapitulated. In Eq. (21), all bi are
set equal to σ1. Atom 0 is put at the origin, x1 assigned lN-CAσ1,
and the start spinor B[0] initialized to (1, 0, 0, 0). An iterative cycle
starts now with the calculation of bond 2. To that purpose, B(θ)

1

and B
(φ)

1 are created [Eq. (34)] (i) and multiplied [Eq. (6)] separately
with the initialized B[0] (ii). The new spinor B[1] is converted with
Eq. (36) into a matrix (iii) but only the first column elements are
generated since we only need to multiply with l2σ1 (iv). Bond
vector 2 is now available and addition to the previous atom
coordinate yields the position coordinate for atom 2 (v). This
procedure is iterated until the end of the chain. After the first
cycle, the B[i] with growing index i is always passed on in the
iterations. The described approach basically applies to a linear
chain but can be trivially extended for a fully branched chain
structure such as a protein. In that case, a tree of spinors must be
computed in a one-to-one correspondence with the real protein
structure but the computational scheme remains exactly the
same. In each branch (side chain), the computations proceed as
in a linear chain.

The above spinor scheme is advantageous for two reasons. First,
the spinors B

(θ)

i
and B

(φ)

i
contain each two components which

are zero and thus reduce the operation count. Second, bi+1 =
li+1σ1 also has two zero components which further improve the
efficiency of the method.

http://onlinelibrary.wiley.com Journal of Computational Chemistry 2012, 00,000–000 7

FULLPAPER http://WWW.C-CHEM.ORG

Spinors Versus Quaternions

Spinors from GA and quaternions are isomorphic and thus closely
interrelated.[16–18, 22] Quaternions were discovered as an indepen-
dent algebra by Hamilton[16, 17] and have several advantages over
matrices in representing rotations (e.g., no gimbal lock). Some
fields such as computer graphics do use extensively quaternions
as their specific advantages cannot be neglected.[23] Nonethe-
less, quaternion algebra has always stood a little apart from main
stream mathematics. Spinors, on the other hand, follow naturally
from derivations in the larger context of GA and can be easily
related to complex numbers at the conceptual level. It seems
more natural, therefore, to see quaternions as entities derived
in GA.

A unit quaternion q (norm ||q|| = 1) is a 4-tuple:

q = q0 + q (37)

with q0 a scalar and q a vector part: q = q1i+q2j+q3k with base
{i, j, k}. The vector q represents the unit axis vector of the rotation
represented by the quaternion. The base {i, j, k} for quaternions
is related to the unit 2-blades of the spinor s by:

i = −ισ1, j = −ισ2, k = −ισ3 (38)

Strictly speaking for spinors, the bivector components are unit
2-blades and represent three orthogonal planes. Using these
bivector components rotation planes can be presented and
because of the duality properties (using the pseudoscalar ι) they
also directly encode the normal vector to that rotation plane.
Using q as reference quaternion, the corresponding spinor s is
now:

s = q0 − q3σ1σ2 − q1σ2σ3 − q2σ3σ1 (39)

Beware that the exact order and definition of the unit bivectors
allow for different implementations of Eq. (39).The proof of matrix
forms (35) and (36) in appendix B, for example, is based on a
different mapping between spinors and quaternions.

The quaternion product pq can be considered as a geometric
product ab with a and b spinors in this case. The main advantage
of GA is that the geometric product is generally valid for differ-
ent types of multivectors. Spinors can thus be multiplied with
simple vectors but also with bivectors, trivectors, or even higher
analogues. In that view, the geometric product ab is only one of
the many types possible in the broad and powerful framework
of GA. This is not the case with quaternions: the quaternion
product is restricted to pure quaternions as rotational entities
and vectors brought into quaternion format. Another important
advantage of spinors is that spinors in the standard model for
3D naturally extend to more advanced models such as the pro-
jective and conformal GA models,[18] allowing the user to take
advantage of these models.[24]

Comparative Results

The spinor methodology was compared with the state of the art

algorithms to manipulate IC.Three common and real scenarios for

retrieving the CC from IC were tested: construction from scratch

of a polypeptide backbone (backbone construction), updating

backbone coordinates from an existing bond vector set (back-

bone updating), and construction of a complete polypeptide (full

chain construction). Method comparison for backbone construc-

tion was done with 3 × 3 matrices,[11] the PSC method,[14] the

original spinor approach[15] (denoted spinor forward method or

spinor FW method), and the self-normalizing natural extension

reference frame method[13] (SN-NeRF method). Briefly, the matrix

method is based on orthogonal rotation matrix theory whereas

the PSC method uses the two preceding bond vectors and IC

to generate a conformation. The spinor FW approach follows a

similar scheme as the PSC method but uses spinors and the

geometric outer product. The SN-NeRF method is still another

forward method, which combines a local frame representation

in spherical coordinates with an appropriate frame rotation by a

3 × 3 rotation matrix to obtain bond and atom coordinates. For

backbone updating, spinors are compared with classical rotation

matrices which are based on an angle-axis description.[10, 12, 23]

For full chain construction, the backward spinor methodology

is compared with the corresponding matrix framework and the

algorithms are derived from the backbone construction algo-

rithms. See Supporting Information for a short survey of the

conformational methods.

All methods were thoroughly implemented and validated. Sys-

tematic tests have been carried out to assess their efficiency as

well as to correlate with previous and available analyzes.[10–15] For

the backbone algorithms, we performed experiments for recov-

ering the atom coordinates of polypeptide chains, generated by

randomly choosing their backbone dihedral angles (ϕ, ψ , and

ω). The ω angle changes could only have maximum amplitude

of 5◦ around the trans position (ω = 180◦). The size of the

polypeptide backbone (333 amino acid residues, �1000 atoms)

was chosen as to approach a medium protein size. Each indi-

vidual timing covered a thousand of such chain calculations as

to have a sufficiently large time value (ms range). This proce-

dure was repeated 1000 times to have a good sampling statistic.

Results were cross-checked by doing runs with smaller and big-

ger backbone sizes (10–30,000 residues) yielding equivalently

scaled timings. The performances of the full chain construction

algorithms were tested with a complete polylysine chain of 333

residues under almost identical test conditions. The versions we

implemented account for changes in the complete IC set of both

backbone and side chains. Each individual polylysine computa-

tion, the full internal coordinate set was altered with in case of

the valence angles and bond lenghts small random deviations

from the equilibrium values.

In addition, the computational efficiency of the methods was

examined theoretically by counting the number of arithmetic

operations needed to be performed in a single step. A single

step is the calculation of the CC of one atom.

Backbone construction

In Table 1, the estimated computational cost for protein backbone
construction is shown for all tested methods.

8 Journal of Computational Chemistry 2012, 00,000–000 http://WWW.CHEMISTRYVIEWS.COM

http://WWW.C-CHEM.ORG FULLPAPER

Table 1. Estimated computational efficiency of different methods for
protein backbone construction.

Computational cost

Method × ± ÷ ÷2 T M fnorm Total

Spinor 26 15 0 2 4 4 0 135
Matrix 27 15 0 0 4 6 0 158
Polyspherical 23 13 3 0 4 6 1/6 160
Spinor FW 45 20 0 1 4 6 1 195
SN-NeRF 26 15 0 0 4 9 1 207

Operation counts apply to the calculation of CC of a single added atom. We
estimated the relative weights with an in house program for the operations
×/±/÷/T / M /

√ as 1/1/2/11/12/3 with T and M referring to trigonometric
functions (sin, cos) and memory load. These values are in good agreement
with Ref. [14]. Division by a constant two (÷2) has a reduced relative weight
of 1 versus 2 for a regular floating-point division. The vector normalization
frequency fnorm corresponds with the number of normalizations added per
atom.A normalization needs 3×/2±/3÷/1√ operations yielding an extra
total cost of 14.Abbreviations:spinor FW = spinor forward method,SN-NeRF
= self-normalizing natural extension reference frame method.

The computational cost of arithmetic operations (×, ±, ÷, ÷2)
for spinors corresponds to that given for quaternions in Ref. [11].
As mentioned before, spinors and quaternions are isomorphic
and should in principle yield the same numbers.[18] The arith-
metic counts for rotation matrices are also in agreement with
the literature.[11] For the PSC method, our analysis includes the
count to obtain the atom coordinate from the computed bond
vector on top of the estimates in the original paper.[14] We add
thus 3 ± and 3× to retrieve the actual atom coordinates from
the bond coordinates. For the spinor forward method,[15] a new
analysis revealed that the ± count from the original paper must
be adapted: the count for the spinor operator product with the
constructed bond vector is two higher than originally deduced
(20 instead of 18). In our implementation of the SN-NeRF method,
we obtain 26 multiplications and 15 addition operations which
is even less than in the original work.[13] All five methods have
the same cost in computation of trigonometric functions (T),
namely 4T. In line with the analysis in Ref. [14], we estimate a
memory transfer load (M) for the methods. This does not refer
to pure memory allocation since all arrays are preallocated in
the algorithms. Rather, it deals with relative amounts of mem-
ory reads and writes in the codes. In principle, the number of
data elements that must be passed on to the next iteration
furnishes a good estimate. This yields 4/9/8/6/6 for the methods
along the top-down order in Table 1. The accumulated backward
spinor and matrix for example, have 4 (4M) and 9 (9M) elements,
respectively. Both the spinor FW and SN-NeRF method pass on
two vectors (6M) whereas the PSC method includes a further
two (2M) for stored trigonometric values. We did not find good
correlation with experimental results so that we made new esti-
mates based on the largest working memory units in the codes.
For backward spinors, this is four (4M) whereas the optimized
matrix schemes calculates 3 × 2 arrays (6M) when updating the
accumulated matrix.[11] For the PSC and spinor FW method, two
bond vectors are the largest units (6M) whereas the SN-NeRF
method has a 3 × 3 array (9M) implemented as largest unit. This
results in 4/6/6/6/9 as estimate in Table 1. In addition, in all of

the forward method codes we needed to introduce an explicit
normalization step which must be included in an estimate (see
Table 1 for details). For the PSC method only one normaliza-
tion per six cycles was needed which agrees with the original
implementation in Ref. [14]. Otherwise computations failed for
backbone sizes of more than 60 atoms. In the spinor FW and
SN-NeRF method, normalization needed to be done each iter-
ation, hence yielding more overhead as compared to the PSC
method. All of the normalizations were related to vector products
in the codes and we believe that in the PSC method the implicit
normalization in the main equation (see Supporting Informa-
tion) allows for a lower normalization frequency. Nevertheless,
this problem of normalization in the forward methods seems
to indicate an intrinsic numerical weakness as compared to the
backward methods. Backward spinors and matrices did not have
this problem. Even for the largest backbone sizes tested (30 000
atoms) no normalization of the accumulated rotational operator
was needed in both cases. Based on the estimates, the spinor
method is the fastest for protein backbone construction and
this is mainly due to the compactness of spinors (4M). Matrices
and the PSC method are somewhat slower whereas the spinor
FW and SN-NeRF methods are predicted to be 40-50% slower
than backward spinors.The estimates also indicate that backward
methods should have the edge on forward methods.

The experimental timings for backbone construction are shown
in Table 2 which contains the results for the Gnu- and Intel-
compiled source codes, both with (level −O3) and without
standard optimization (level −O0). For the Intel -03 versions,
spinors are around 15% faster than matrices and 25% than the
PSC method. The spinor FW and SN-NeRF methods lag further
behind the PSC approach. The relative timings for the Gnu −O3
compiled versions agree well with those of the Intel counter-
parts but are on an absolute basis much slower. In addition,
all the −O0 compiled executables yield virtually the same rela-
tive performances among the methods, pointing out consistent
results among the differently compiled versions. Despite the basic
assumptions about the memory load, the estimates are in good
agreement with the experimental timings.

When considering now the absolute timings, the −O3 com-
piled versions are substantially faster than their −O0 compiled

Table 2. Experimental timings for construction of a 1000-atom protein
backbone, iterated 1000 times with four different mathematical methods
(n = 1000).

Gnu (ms) Intel (ms)
Cost (a.u.)

Method −O0 −O3 −O0 −O3 Estimate

Spinor 142.6 ± 0.7 103.6 ± 0.5 125.0 ± 0.0 45.4 ± 0.2 135
Matrix 201.5 ± 0.6 120.5 ± 0.6 154.4 ± 0.1 53.2 ± 0.0 158
Polyspherical 205.1 ± 0.7 131.7 ± 0.7 150.5 ± 0.2 61.0 ± 0.1 160
Spinor FW 219.9 ± 0.5 145.0 ± 0.5 182.5 ± 0.2 78.3 ± 0.0 195
SN-NeRF 278.1 ± 0.6 156.3 ± 0.6 238.5 ± 0.1 82.0 ± 0.0 207

Both the Intel and Gnu C++ compiler were used with (−O3) and with-
out optimization (−O0). Implementation estimates from Table 1 in arbitrary
units (a.u.) are included for comparison. Abbreviations: spinor FW = spinor
forward method, SN-NeRF = self-normalizing natural extension reference
frame method.

http://onlinelibrary.wiley.com Journal of Computational Chemistry 2012, 00,000–000 9

FULLPAPER http://WWW.C-CHEM.ORG

counterparts. Furthermore, the optimized Intel executables are
substantially faster than the Gnu counterparts. In the optimized
versions, it is observed that the differences between the dif-
ferent methods are minimized. Concentrating on, for example,
the fastest executables (Intel −O3 compiled), the gap between
spinors and matrices is substantially narrowed as compared to
the nonoptimized version inasmuch that the difference can be
neglected on practical terms if speed is not of the uttermost
importance. Compilers (especially Intel compiler in an Intel CPU)
are able to exploit all kind of techniques to reduce the number
of cycles per operation including parallelization and hence the
performance gap.

In summary, the spinor method yields the fastest implemen-
tation but the differences are not that much with matrices and
the PSC method. Both the spinor FW and SN-NeRF methods are
the slowest methods and 30–50% slower than backward spinors.
The performance differences are related to the memory transfer
loads in the actual implementations and the need for explicit
vector normalizations. In practice, the compiler choice allows a
larger performance gain than choosing the fastest method when
working with a given compiler. It can be noticed, for example,
that the Intel −O3 compiled SN-NeRF method is 20% faster than
the Gnu −O3 compiled backward spinor method.

Backbone updating

For updating of a protein backbone, both spinors and matri-
ces were implemented. The algorithms we implemented for our
test only accounted for dihedral angle changes. Bond lengths
and valence angles were considered to be fixed. This type of
test is similar to that in Ref. [12] but in this section we solely
focus on the backbone structure. To correlate well with the esti-
mated total costs all three dihedrals were changed (ϕ, ψ , and
ω) during the calculations. Tables 3 and 4 show the theoretical
estimates for the computational cost and experimental timings,
respectively.

Table 3. Estimated computational efficiency for protein backbone
updating with spinors and matrices.

Computational cost

Method × ± ÷2 T M Total

Spinor 41 30 1 2 4 142
Matrix 51 37 0 2 9 218

See Table 1 for details.

Table 4. Experimental timings for updating of a 1000-atom protein
backbone, iterated 1000 times (n = 1000).

Gnu (ms) Intel (ms)
Cost (a.u.)

Method −O0 −O3 −O0 −O3 Estimate

Spinor 223.1 ± 0.5 98.1 ± 0.5 198.4 ± 0.2 70.0 ± 0.1 142
Matrix 438.4 ± 1.3 136.5 ± 0.9 393.5 ± 1.3 75.3 ± 0.1 218

Estimates from Table 3 in arbitrary units (a.u.) are included for comparison.
See Table 2 for details.

The theoretical estimates yield a clear advantage for spinors.
Except for the trigonometric part which has equal counts, all the
important counts are in favor of spinors. As a result, the total
estimated count of the spinors is approximately 65% of that
of matrices. However, the actual implementations show a similar
trend as is the case for the backbone construction algorithms.The
spinor method performs better but only slightly. The Intel −O3
compiled code for spinors uses only 93% of the time that matrices
need which is a marginal difference. From the practical point of
view, the differences are thus negligible unless dealing with very
large molecular systems in which conformational computations
constitute the bulk of the time. For the fastest code, the results
here are in good agreement with those in Ref. [12] where it is
found that quaternions (isomorphic to spinors) perform slightly
better than rotation matrices. As in the case of the construction
methods, the Intel compiler yields faster optimized code than the
Gnu compiler albeit the difference is less for spinors (only 30%)
than for matrices (double as fast). The timings for nonoptimized
executables and that of the Gnu −O3 compilation seem to be
much more in line with the theoretical estimates. As such, Table 4
for manipulation algorithms gives substantial evidence that the
Intel compiler uses advanced tricks to improve code performance.

Full chain construction

For the construction of a complete polypeptide chain—including
side chains, hydrogen, and carbonyl atoms—we implemented
both the backward spinor and matrix schemes. As was stated
before, the computation of side chains can be done by an exten-
sion of the linear backward scheme to tree-like structures. The
full chain construction implementations are thus derived from
the backbone construction algorithms for spinors and matrices. A
polylysine was chosen since lysines are side chains large enough
to assess the influence of branching on the linear scheme.

Table 5 shows the theoretical estimates for spinor and matrix
implementations, both for terminal and nonterminal atoms. For
backward spinors there is no difference between terminal and
nonterminal atoms. The four spinor components must always be
calculated for terminal atoms, even if the spinor does not need to
be chained further. The total estimate per atom in a polypeptide
is, therefore, 135 for spinors. However, for terminal atoms in the

Table 5. Estimated computational efficiency of backward spinors and
matrices for a complete polypeptide construction.

Computational cost

Method Atom × ± ÷2 T M Total

Spinor Nonterminal 26 15 2 4 4 135
Terminal 26 15 2 4 4 135
Average 135

Matrix Nonterminal 27 15 0 4 6 158
Terminal 14 9 0 4 6 139
Average 146

Separate counts included for nonterminal and terminal atoms. Average
count for matrices apply to a polylysine chain. Weights are 8/22 and 14/22
for nonterminal and terminal atom counts, respectively. See text and Table 1
for details.

10 Journal of Computational Chemistry 2012, 00,000–000 http://WWW.CHEMISTRYVIEWS.COM

http://WWW.C-CHEM.ORG FULLPAPER

matrix method only the first matrix column must be calculated
instead of the complete matrix.This results for terminal atoms in a
reduction of 13 multiplications and 6 additions as compared to a
nonterminal atom count. This reduction in arithmetic operations
for matrices was also discussed in Ref. [11] but not used in
making estimates. These reduced counts result for the backward
matrix method in an estimated average cost of 139 for terminal
atoms. This is around 10% less than for nonterminal atoms (158).
The average count for matrices must now take into account the
number of terminal and nonterminal atoms in a peptide residue.
In the illustrative case of lysine, we have eight nonterminal and
14 terminal atoms which results in an estimate of 146 per atom
(158 · 8/22 + 139 · 14/22 � 146). This value is closer to the
spinor estimate than in the pure backbone case. In general,
a lysine residue has a high terminal/nonterminal atom ratio
(14/8) favoring slightly the matrix method versus an average
polypeptide chain. But, even for a glycine residue (4/3) with
the lowest ratio the total cost is only 147. The estimate of 146
for lysine is thus a good estimate for all peptide residues. In
conclusion, the theoretical estimates for backward spinors and
matrices show that for the full chain algorithms both methods
are closer in performance than in the backbone case.

Table 6. Experimental timings for construction of a complete 333-residue
polylysine chain iterated 1000 times (n = 1000).

Gnu (ms) Intel (ms)
Cost (a.u.)

Method −O0 −O3 −O0 −O3 Estimate

Spinors 1386.7 ± 1.0 1002.1 ± 0.4 1046.8 ± 0.3 371.8 ± 0.1 135
Matrices 1747.5 ± 0.2 1199.7 ± 0.3 1107.2 ± 0.3 420.4 ± 0.1 146

Estimates from Table 5 in arbitrary units (a.u.) are included for comparison.
See Table 2 for details.

The results of the test runs are shown in Table 6. The given
timings are valid for both alteration of the complete IC set and
the dihedral subset at each polylysine calculation. The estimates
agree relatively well with the experimental timings except for
the data from the Gnu −O0 compiled versions. In the latter case,
the matrices perform substantially more under par as to what
is expected. For the Intel −O0 compiled versions on the other
hand, matrices perform nearly as good as spinors. Also here,
the Intel versions show significantly better performance than
their Gnu counterparts which observation is critical if perfor-
mance matters in conformational computations. In addition, it is
remarked that the spinor/matrix timing ratios in the backbone
and full chain algorithms do not differ that much for the fastest
(−O3 compiled) codes. This indicates that the tree-like algorithm
structure and the more advantageous terminal atom compu-
tation for matrices do not alter much the basic performance
characteristics of the linear matrix and spinor scheme. Specifi-
cally for the Intel −O3 compiled versions, it is even noticed that
the atom number ratios full chain/backbone (7326/999 = 7.3
for polylysine) correspond relatively well with the timing ratios
(e.g., spinors: 370/45.4 = 8.2) indicating little overhead from
algorithmic branching itself. The results here illustrate well that

spinor Eq. (21) can be implemented and yields a very efficient
computational framework for protein calculations. Spinors per-
form at least as good as matrices. It is not unlikely that with
further tweaking and optimization performance differences can
be further minimized.

Computational details

For the implementation, we programmed in C++ and compu-

tations were done in Linux (centOS 5.5) on a 64-bit machine.

An Intel(R) Core (TM) i7 CPU 950@3.07 GHz processor with 12

Gb RAM was used. The programs were compiled with both the

Intel (version 12.0) and Gnu (version 4.1.2) C++ compilers. Com-

pilations were done both at −O3 and −O0 level optimization

with default settings for each of the compilers. The code for the

implemented algorithms and the tests are freely available on

request.

Conclusions

Here, we presented a complete GA framework for effective manip-

ulation of protein conformations. Spinors and their products are

an attractive alternative to represent bond rotations. We demon-

strated how the backward propagation of the conformational

change through the protein backbone generates all the correct

spinors in advance. And, how such spinors can act upon the indi-

vidual protein bonds to efficiently retrieve atomic coordinates

from IC. In real implementations, spinors are slightly more effi-

cient for protein manipulation than the other standard methods.

This applies to all tested cases: backbone construction, backbone

updating and polypeptide construction. The profits over the best

of the rest range from 5–15% in our tests. For backbone and

full chain construction the test results are well in agreement

with the estimates. However, the spinor overperformance ver-

sus matrices is below theoretical expectations for the updating

algorithms. Here, optimization and parallelization causes alike

performances among spinors and matrices. From the practical

point of view, compiler choice proves to be critical to obtain per-

formant executables for all of the examined methods. Spinors

are the most costless methodology and are promising tools for

conformational calculations in the protein field. Furthermore, an

optimized construction algorithm is obtained based on the more

general equations and it is shown that we recover existing quater-

nion equations. The intimate relationship between spinors and

quaternions is highlighted as to point out the possible benefit

for GA from results in quaternion research.[25, 26] As well GA and

spinors are promoted since they constitute the more general

framework than quaternion algebra.

Several aspects of the current approach are interesting for

further research. A small own preliminary study points out

that parallelization of the spinor approach is possible and

publication[27] already briefly touches on the subject in the frame-

work of conformal GA. The conformal GA itself also constitutes

an interesting field to be explored in view of protein calcula-

tions. In robotics, the potential of conformal GA has already been

illustrated.[24, 28]

http://onlinelibrary.wiley.com Journal of Computational Chemistry 2012, 00,000–000 11

FULLPAPER http://WWW.C-CHEM.ORG

Appendix: Mathematical Proofs

Appendix A: Center of Mass Calculation

The center of mass X can be derived in function of bond vectors
bi as follows. The center of mass X for a polyatom system such
as a protein is equal to:

X = 1

M

n∑
i=0

mixi (A1)

with mi the mass of atom i and M the sum of all masses:
M = ∑n

i=0 mi . If we expand this equation we obtain:

X = 1

M
[m0x0 + m1x1 + · · · + mnxn] (A2)

which can be rewritten as:

X = 1

M
[m0x0 + m1x0 + m1b1 + m2x0 + m2b1 + m2b2

+ · · · + mnx0 + mnb1 + · · · + mnbn] (A3)

The bond vectors bi and x0 can now be collected:

X = 1

M
[Mx0 + (m1 + m2 + · · · + mn)b1 + (m2 + · · · + mn)b2

+ · · · + (mn)bn] (A4)

and results in:

X = x0 +
n∑

i=1

 n∑
j=i

mj/M

bi = x0 +
n∑

i=1

fibi (A5)

which is Eq. (23) and contains the coefficient fi as stated in
Eq. (24).

Appendix B: Spinors in Matrix Form

Here, we explicitly derive in GA the rotation action of a spinor
operator R on the unit vector σ1. The spinor operator R consists
of the base spinor R = α+ ιb and its reverse spinor R†. We relate
the 4-tuple (α, bx , by , bz) with the spinor R. The pseudoscalar ι

is equal to σ1σ2σ3. The action of R on σ1 is now:

σ ′
1 = R†σ1R

= R†σ1(α + σ1σ2σ3(bxσ1 + byσ2 + bzσ3))

= R†σ1(α + σ2σ3bx − byσ1σ3 + bzσ1σ2)

= R†(ασ1 + σ1σ2σ3bx − byσ3 + bzσ2)

= (α − σ2σ3bx + byσ1σ3 − bzσ1σ2)

· (ασ1 + σ1σ2σ3bx − byσ3 + bzσ2) (B1)

in which the basic properties of the geometric products σiσj

have been used, namely σiσi = 1 and σiσj = −σjσi . Further
elaboration of the last 2 lines in Eq. (B1) yields:

σ ′
1 = (

α2 + b2
x − b2

y − b2
z

)
σ1 + 2(αbz + bxby)σ2

+ 2(bxbz − αby)σ3 + 0ι (B2)

in which we collected the terms for the components σi . The 4-
tuple (α, bx , by , bz) is now substituted by (s0, s1, s2, s3) to illustrate
better the analogy to the quaternion (q0, q1, q2, q3). Equation (B2),
using s2

0 + s2
1 + s2

2 + s2
3 = 1, can now be rewritten as:

σ ′
1 = 2

(
s2

0 + s2
1 − 1/2

)
σ1 + 2(s1s2 + s0s3)σ2

+ 2(s1s3 − s0s2)σ3 + 0ι (B3)

which recovers the first column of the quaternion matrix in Eq.
(35). Analogously, the coefficients for σ2 and σ3 can be calculated
to recover the second and third columns of this matrix.

Acknowledgments

The authors thank Santiago García Sánchez for his advice on the

making of the drawings. They also wish to thank the reviewers

for the critical assessment of the submitted manuscript and their

constructive advice on improvements.

Keywords: protein conformation • rotation • internal coordi-
nate • modeling • geometric algebra • spinor • quaternion

How to cite this article: P. Chys, P. Chacón, J. Comput. Chem.

2012, 00, 000–000. DOI: 10.1002/jcc.23002

Additional Supporting Information may be found in the
online version of this article.

[1] R. Abagyan, M. Totrov, D. Kuznetsov, J.Comp.Chem. 1994, 15, 488.

[2] A. Brünger, J. Kuriyan, M. Karplus, Science 1987, 235, 458.

[3] A. Brünger, P. Adams, G. Clore, P. Gros, R. Grosse-Kunstleve, J.-S. Jiang, J.
Kuszewski, N. Nilges, N. Pannu, R. Read, L. Rice, T. Simonson, G. Warren,
Acta Cryst. 1998, D54, 905.

[4] A. Brünger, Nat.Protocols 2007, 2, 2728.

[5] J. Ponder, F. Richards, J.Comp.Chem. 1987, 8, 1016.

[6] S.-H. Lee, K. Palmo, S. Krimm, J.Comp.Chem. 2007, 28, 1107.

[7] P. Pulay, B. Paizs, Chem.Phys. Lett. 2002, 353, 400.

[8] M. Totrov, R. Abagyan, J.Comp.Chem. 1994, 15, 1105.

[9] K. Németh, M. Challacombe, M. Van Veenendaal, J. Comp. Chem. 2010,
31, 2078.

[10] C. Alvarado, K. Kazerounian, Protein Eng. 2003, 16, 717.

[11] C. Seok, E. Coutsias, Bull. Korean Chem.Soc. 2007, 28, 1705.

[12] V. Choi, J.Chem. Inf.Model 2005, 46, 438.

[13] J. Parsons, J. B. Holmes, J. M. Rojas, J. Tsai, C. E. M. Strauss, J.Comp.Chem.

2005, 26, 1063.

[14] J. Pesonen, O. E. Henriksson, J.Comp.Chem. 2009, 31, 1874.

[15] P. Chys, J.Chem.Phys. 2008, 128, 104107–1.

[16] D. Hestenes, New Foundations for Classical Mechanics; Reidel: Dordrecht,
1986.

[17] A. Lasenby, C. Doran, Geometric Algebra for Physicists; Cambridge
University Press: Cambridge, 2002.

[18] L. Dorst, D. Fontijne, S. Mann, Geometric Algebra for Computer Science:
An Object-Oriented Approach to Geometry; Morgan Kaufmann: San
Francisco, 2007.

[19] D. Hestenes, D. Sobzcyk, Clifford Algebra to Geometric Calculus; Reidel:
Dordrecht, 1985.

[20] J. Gibbs, The Scientific Papers: 2. Dynamics, Vector Analysis and Multiple
Algebra; Electromagnetic Theory of Light; Dover: New York, 1961.

[21] A. Fersht, Enzyme Structure and Mechanism; W. H. Freeman and
Company: New York, 1985.

12 Journal of Computational Chemistry 2012, 00,000–000 http://WWW.CHEMISTRYVIEWS.COM

http://WWW.C-CHEM.ORG FULLPAPER

[22] J. Rooney, OpenMech.Eng. J. 2010, 4, 86.

[23] D. Marsh, Applied Geometry for Computer Graphics and CAD; Springer-
Verlag: London, 2005.

[24] E. Bayro-Corrochano, J. Zamora-Esquivel, Robotica 2007, 25, 43.

[25] J. Chou, IEEE Trans.Robot.Automat. 1992, 8, 53.

[26] E. Coutsias, C. Seok, K. Dill, J.Comp.Chem. 2004, 25, 1849.

[27] J. Zamora-Esquivel, B. Bayro-Corrochano, In IEEE/RSJ 2010 International
Conference on Intelligent Robots and Systems, IROS 2010—Conference
Proceedings; Taipei, 2010; p. 2377.

[28] E. Bayro-Corrochano, O. Carbajal-Espinosa, A. Loukianov, In The 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems;
Taipei, 2010; p. 1378.

Received: 30 September 2011

Revised: 26 January 2012

Accepted: 1 April 2012

Published online on

http://onlinelibrary.wiley.com Journal of Computational Chemistry 2012, 00,000–000 13

