
November 21, 2011 15:8 WSPC/INSTRUCTION FILE complex-dyn

Curvilinear dynamics of protein complexes

K. O. E. Henriksson

Department of Physics

University of Helsinki

P.O.Box 43

FIN-00014 University of Helsinki

krister.henriksson@helsinki.fi

J. Pesonen

Department of Chemistry

University of Helsinki

P.O.Box 55

FIN-00014 University of Helsinki

P. Chacon

Centro de Investigaciones Biologicas

Ramiro de Maeztu 9

28040 Madrid

Spain

The suitability of a recently developed extension to the polyspherical parametrization
of protein complexes has been investigated by molecular dynamics simulations. The
extension makes it possible to study the motion of proteins consisting of several chains,
which are internally covalently bonded. Tests indicate that time steps of up to at least

10 fs for simulations lasting up to 100 ps are possible, at least for small proteins.
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1. Introduction

In our previous studies 1,2 we have laid the theoretical foundations for simulation

of single-chain proteins using internal coordinates. In this study we present an ex-

tension to that polyspherical approach (PA) so that molecules consisting of several

chains can also be described. The extension allows for e.g. free rotation of the entire

molecule or only some of the chains. In the extension of the polyspherical approach

the relative distances and orientations of the chains have their own parameters. Ad-

ditional parameters are provided for the total center of mass, and the orientation of

the arbitrarily chosen first chain, relative to a fixed external frame (the laboratory).

Each chain has its own body-fixed local frame, and internal coordinates such as

bond lengths, bond angles, and torsion angles.

In the present study we implement the polyspherical approach to investigate the

1
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dynamics of a test protein containing three chains. As before, 2 the bond lengths

and bond angles are considered fixed, allowing only torsion angles as well as the

chain-related degree of freedom to change with time. The present approach is some-

what similar to the separation into subsystems described in the review by Gatti

and Iung 3, but the formalism is Lagrangian, and especially adopted for very large

complexes. The present study is not aimed at performing simulations using realistic

potentials on dense proteins, but merely verifying the suitability of the parametriza-

tion for multi-chain protein dynamics. Therefore the test is limited to using a simple

Morse potential. The protein motion is integrated with the standard velocity Verlet,

using several different time steps. The conservation of the total energy and (angular)

momentum is also investigated.

The general coordinate system presented here can be applied to multiple inter-

esting problems. For example, we are actively working on normal mode analysis 4

and inverse kinematic problems, but other applications could also be possible (e.g.

refinement in crystallography 5).

2. Theory

2.1. Curvilinear coordinates

In the polyspherical approach 1,6 the molecule is located in an external fixed (lab-

oratory) frame with the orthonormal basis {uk}, k = 1, 2, 3, which can be taken

as the usual Cartesian basis. The molecule is divided into NC chains, each with its

own body-fixed frame {u
(I)
k }. Each chain is internally parametrized with the bond

lengths r
(I)
i , bond angles θ̃

(I)
j , and torsion angles φ

(I)
k .

The frame {u
(I)
1 ,u

(I)
2 ,u

(I)
3 }, fixed to Ith chain (I = 2, 3, . . . , NC) is defined by

u
(I)
3 = r̂

(I)
1 (1)

u
(I)
1 =

r̂
(I)
2 + cos θ̃

(I)
12 r̂

(I)
1

sin θ̃
(I)
12

(2)

u
(I)
2 = u

(I)
3 × u

(I)
1 (3)

using the definitions from Ref. 1. This frame can be obtained from the frame

{u
(1)
1 ,u

(1)
2 ,u

(1)
3 } attached to the chain 1 by rotating it about the instantaneous

rotation axis

β̂1I = sin θ1I sinϕ1Iu
(1)
1 − sin θ1I cosϕ1Iu

(1)
2 + cos θ1Iu

(1)
3 (4)

as

u
(I)
j =

(
2α2

1I − 1
)
u
(1)
j + 2α1Iβ1I × u

(1)
j + 2u

(1)
j · β1Iβ1I (5)

where
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α1I = cos
χ1I

2
(6)

β1I = β̂1I sin
χ1I

2
(7)

are the Euler scalar and vector, respectively. Note that the frame {u
(I)
1 ,u

(I)
2 ,u

(I)
3 }

is oriented relative to the frame {u
(1)
1 ,u

(1)
2 ,u

(1)
3 } and not the laboratory

frame {u1,u2,u3}. This has the advantage that {u
(I)
1 ,u

(I)
2 ,u

(I)
3 } depends on

{u
(1)
1 ,u

(1)
2 ,u

(1)
3 }, but not vice versa.

Given the two frames {u
(I)
1 ,u

(I)
2 ,u

(I)
3 } and {u

(1)
1 ,u

(1)
2 ,u

(1)
3 } as an input, the

Euler parameters can be obtained as

α1I =
γ1I√

γ21I + κ1I · κ1I

(8)

β1I = −
κ1I√

γ21I + κ1I · κ1I

(9)

where

γ1I = 1 +
3∑

k=1

u
(I)
k · u

(1)
k (10)

κ1I =

3∑

k=1

u
(I)
k × u

(1)
k (11)

When the axis of rotation β̂1I is known, the angles ϕ1I and θ1I are easily obtained

as follows. Because 0 ≤ θ1I ≤ π, we can obtain θ1I as

θ1I = arccos
(
β̂1I · u

(1)
3

)
(12)

If the value of θ1I differs from zero, the cosines and sines of the angles ϕ1I can be

solved as

sinϕ1I =
β̂1I · u

(1)
1

sin θ1I
(13)

cosϕ1I = −
β̂1I · u

(1)
2

sin θ1I
(14)

Because 0 ≤ ϕ1I < 2π, the value of sinϕ1I is needed in order to recover the

appropriate value of ϕ1I from the given value of arccos (cosϕ1I). It is obtained as

sinϕ1I ≥ 0 ⇒ ϕ1I = arccos (cosϕ1I) ∈ [0, π] (15)

sinϕ1I < 0 ⇒ ϕ1I = 2π − arccos (cosϕ1I) ∈ (π, 2π) (16)
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where [α, β] stands for a closed, and (α, β) stands for an open interval from α to β.

If θ1I = 0, then the value of ϕ1I is inconsequential (any value will do). The angle

of rotation 0 ≤ χ1I < 2π can be easily recovered from the given Euler scalar as

χ1I

2
= arccosα1I (17)

The angles θ1I , χ1I , and ϕ1I are determined uniquely for almost every relative

orientation of the frames {u
(I)
1 ,u

(I)
2 ,u

(I)
3 } and {u

(1)
1 ,u

(1)
2 ,u

(1)
3 }, excluding the case

that the axes u
(I)
3 and u

(1)
3 coincide, i.e., θ1I = 0. In that case ϕ1I can be chosen

freely.

The over-all orientation of the chain complex in space can be described by the

orientation of the body-frame {u
(1)
1 ,u

(1)
2 ,u

(1)
3 } of the first chain with respect to the

laboratory frame {u1,u2,u3}. The body frame is parametrized by the instantaneous

rotation angle χ, and the two angles θ and ϕ that parametrize the orientation of the

instantaneous rotation axis. The relevant formulas are presented in Ref. 1, using

u
(1)
i instead of u′

i.

The above definitions allow a description of the orientation of all the NC body

frames and the internal state of each chain I. However, the mutual distances between

the body frames are still not accounted for. The missing degrees of freedom can be

derived from the center of mass of the molecule,

X =

NC∑

I=1

NI∑

j=1

m
(I)
j x

(I)
j

M
=

NC∑

I=1

MIXI

M
, (18)

where M =
∑NC

I=1

∑NI

j=1m
(I)
j =

∑NC

I=1MI . We simply chose the projection scalars

X(k) = X · uk. (19)

and

X
(k)
1I = (XI −X1) · u

(1)
k , I ≥ 2. (20)

as the required degrees of freedom.

The coordinates defined above take full care of the positions and orientations

of the chains and their atoms. The parameters {r
(J)
i }, {θ̃

(J)
i }, {φ

(Ji)
jk }, {X

(k)
1J }, and

{θ1J , ϕ1J , χ1J} can be said to be shape coordinates. In contrast, the two sets of

parameters {X(k)} and {θ, ϕ, χ} describe the location of the total center of mass,

and the overall orientation of the molecule, respectively.

2.2. Atomic positions

By using the result derived in Ref. 1, it is obvious that the position vec-

tors {x
(I)
1 ,x

(I)
2 , . . . ,x

(I)
NI

} can be written as functions of the bond vectors

{r
(I)
1 , r

(I)
2 , . . . , r

(I)
N−1} and the center of mass vector XI as

x
(I)
i = XI + s

(I)
i −

NI∑

j=2

m
(I)
j

MI

s
(I)
j (21)
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Now, s
(I)
j =

∑
k r

(I)
k is the sum of the bond vectors, which form the chain connecting

x
(I)
1 and x

(I)
j (i.e., the tail of the first bond vector in the chain is on first atom,

and the head of the last bond vector points to the jth atom), and i = 1, 2, . . . , NI .

However, we still need to evaluate XI in terms of the relative centers of mass {X1I}

and the total center of mass X. First, the definition for X1I can be written

XI = X1 +X1I (22)

Second, we note that
∑NC

J=1MJX1J/M =
∑NC

J=1MJ (XJ −X1) /M = X − X1,

which gives

X1 = X−

NC∑

J=2

MJX1J

M
, (23)

(note that X11 = 0). Consequently,

XI = X+X1I −

NC∑

J=2

MJX1J

M
, (24)

and only fundamental curvilinear coordinates are now present in Eq. (21).

2.3. Equations of motion

As before, 2, the Lagrangian equations of motion are

q̈p = −

A∑

ijk

g(pi)Γijk q̇j q̇k +

A∑

i

g(pi)F(q),i. (25)

Here g(pi) is the inverse metric tensor, Γijk is the Christoffel symbol, and F(q),i is

the force acting on coordinate qi. The metric tensor and the Christoffel symbol are

defined as

gij =

Nc∑

I=1

NI∑

k

m
(I)
k

∂x
(I)
k

∂qi
·
∂x

(I)
k

∂qj
, (26)

Γijk =

Nc∑

I=1

NI∑

k′

m
(I)
k′

∂x
(I)
k′

∂qi
·

(
∂2x

(I)
k′

∂qj∂qk

)
, (27)

Here I denotes the chain, Nc is the total number of chains in the complex, NI is the

total number of atoms in chain I, m
(I)
k is the mass of atom k in chain I, and x

(I)
k is

the position of that atom. All the necessary derivatives are presented in Appendices

A and B. The coordinates {qi} include the shape coordinates {r
(I)
k }, {θ̃

(I)
k }, {φ

(Ii)
jk },

{X
(k)
1I }, {θ1I , ϕ1I , χ1I}, as well as the overall positional and orientation coordinates

{X(k)} and (θ, ϕ, χ), respectively.

The force acting on coordinate qi is
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F(q),i = −
∂V

∂qi
= −

∑

k

∂xk

∂qi
·∇xk

V. (28)

The evaluation of ∇xk
V is conceptually straightforward, but can be laborious in

practice.

In the present study the focus is on demonstrating the validity of the extension

of the polyspherical parametrization to polymer complexes, hence a simple potential

will be used. The choice is the Morse potential

V
(tot)
M =

N∑

ij

fc(rij)VM(rij)

=

N∑

ij

fc(rij)De

(
exp

[
− 2a(rij − r

(0)
ij )
]
− 2 exp

[
− a(rij − r

(0)
ij )
])
, (29)

where rij = |rij | = |xj − xi| and fc(r) = 1 when r ≤ R − D, fc(r) = 0 when

r ≥ R+D, and

fc(r) =
1

2
−

1

2
sin
( π

2D
(r −R)

)
(30)

otherwise. The potential cutoff function fc guarantees that the potential energy

contribution for pair i, j go towards zero when rij approaches R+D from below.

The equilibrium distance between the atoms i and j is denoted r
(0)
ij . The Morse

potential is more ”natural” than the harmonic potential we have used earlier 2,

since the potential energy contribution of far-way atoms automatically approach

zero, and approach a large value when the atoms come close to one another.

The integration of Eq. (25) is performed using velocity Verlet 7. The work flow

for solving the equations of motion in torsion space is spelled out in Ref. 2.

2.4. Importance of orientation coordinates

The potential will depend only on the shape coordinates, and is invariant with

respect to the changes in {χ, θ, ϕ}. However, the kinetic energy part contains terms

where these coordinates are mixed with other coordinates. Hence, {χ, θ, ϕ} must be

included to the equations of motion. Especially, they are needed to ensure that the

total angular momentum is conserved. To understand this, it suffices to write the

body-frame components l′i = u′
i · l of the angular momentum

l =

Nc∑

I

NI∑

α

m(I)
α y(I)

α × ẏ(I)
α , (31)
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where y
(I)
α = x

(I)
α −X, and X is the center of mass position of the entire complex,

explicitly as 8

l′i =
∂L

∂ω′
i

=

3∑

j=1

g′ijω
′
j +

A∑

j=1

g̃′ij ṡj , (32)

where g′ij denotes the element (ω′
i, ω

′
j) and g̃′ij denotes the element (ω′

i, sj) of the

covariant metric tensor g′. It is related to the metric tensor g used in the present

work by the transformation g = Ωg′ΩT , where the superscript T stands for the

transpose. The matrix Ω relates the rotational velocities ω′
i = ω · u

(1)
i and the time

derivatives of the rotational angles {χ, θ, ϕ} (denoted now for compactness by {Θj})

as ω′
i =

∑3
j=1 Ω

T
ijΘ̇j . Although Ω is not needed explicitly here, it can be evaluated

easily for the present rotational parametrization. It is given for the fixed Z-X-Z

Euler angle parametrization, or the “Goldstein convention”, in Eq. (34), p. 278 in

Ref. 8. Consider the case l = 0. Because the values of {ṡj} (and the element (ω′
i, sj)

of the metric tensor g) generally differ from zero, the total angular momentum does

not vanish by setting the coordinates{χ, θ, ϕ} to constant value (which would imply

ω′
j = 0 for j = 1, 2, 3). In fact, the only way to make l′i (i = 1, 2, 3) vanish identically

is to let the coordinates {χ, θ, ϕ} change in the manner that the value of the first

term,

j′i =

3∑

j=1

g′ijω
′
j , (33)

(often referred as the rotational contribution to angular momentum) compensates

the value of the second term,

k′i =

A∑

j=1

g̃′ij ṡj , (34)

which is often referred as the vibrational contribution to angular momentum. This,

in turn, means that the coordinates {χ, θ, ϕ} may change, and consequently, ω′
j

may differ from zero, when the Lagrange’s equation of motion are solved (note

that l is an invariant for conservative systems). Note also that the force needed to

constrain {χ, θ, ϕ} to constant value can not be derived from a potential, which is

solely a function of the shape coordinates. Hence, the required constraint force is

not conservative, and therefore does not preserve angular momentum.

3. Results and discussion

3.1. Static test of parametrization

The polyspherical parametrization for multiple chain molecules has been tested

by applying it to the photosynthetic enzyme ribulose-1,5-bisphosphate carboxy-

lase/oxygenase (the version with PDB code 2VDH). This protein contains 15 chains,

making a total of 37804 atoms. The internal degrees of freedom were calculated and



November 21, 2011 15:8 WSPC/INSTRUCTION FILE complex-dyn

8

10-14

10-13

10-12

10-11

10-10

D
iff

er
en

ce
,d

i
(p

m
)

5000 10000 15000 20000 25000 30000 35000
Atom index, i

Chain 5

Figure 1. A plot of the difference di between read-in and reconstructed Cartesian atomic positions
for the chain with the PDB code 2VDH. The vertical lines indicate that a new chain is started.

used to reconstruct the Cartesian atomic positions. A plot of the differences di
(i = 1, 2, . . . , N), given by the expression

di = |xi − yi| (35)

where yi denotes the reconstructed position of atom i, is shown in Fig. 1.

As can be seen in Fig. (1), the difference between original and reconstructed

positions is always less than∼ 10−10 pm in this particular case. The atomic positions

themselves are given in Ångström, which equals 0.1 pm. Also seen from the figure,

there are no cumulative round-off errors between the chains. This can be understood

from Eq. (21), where it is clear that all positions inside a chain I are given as a sum

over bonds in that chain only. Therefore round-off errors accumulate inside chains

only, and not from one chain to the next chain, as can also be observed from the

figure. From this relationship it is also clear that the longer the chain is the greater

is the round-off error for positions in that chain, as compared to shorter chains.

This fact is illustrated in Fig. (1) by the relatively larger error in atomic positions

for chain 5, which contains roughly twice the number of residues as the preceding

chains.
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3.2. Dynamic test of parametrization

For performing molecular dynamics the code tod used in our previous studies 1,2

was extended to handle dynamics of polymers with multiple chains. The simulated

multi-chain protein was extracted from the single-chain protein oxymyoglobin (PDB

code 1A6M). Residues 1-5, 10-15, and 20-24 were used. The nitrogen atoms in

residues 6, 16, and 25 were kept and labelled as oxygen atoms in order to properly

terminate the chains.

A maximum of three backbone angle types per residue, φ, ψ, χ1, were considered

free to move. These angles involve the bond sets (i) C-N-CA-C, (ii) N-CA-C-N, as

well as (iii) N-CA-CB with CA connecting to N, respectively. Here CA is the alpha

carbon atom in a residue and CB is the first carbon atom in the side-chain, if such

a one is present. This gave a total of 13, 17, and 13 torsion angles in chain 1, 2, and

3, respectively. The initial values of the torsion angles were set as φi = φ
(eq)
i +u∆φ,

where φ
(eq)
i is the equilibrium value, u is a uniformly distributed random number

in the interval [−1, 1], and ∆φ is an amplitude. The amplitude ∆φ = 3 (degrees)

was used. In addition, all the coordinates describing the orientation of the chains

and their distance from each other — namely θ, ϕ, χ, {θ1J , ϕ1J , χ1J}, J = 2, 3,

{X(k)}, k = 1, 2, 3, {X
(k)
1J }, J = 2, 3, k = 1, 2, 3 — were used. These contributed a

total of 18 degrees of freedom. The initial values of these coordinates were not mod-

ified. All initial velocities q̇i were set to zero. No resetting or scaling was performed

on any of the velocities during the simulation. It should be noted that no hydrogen

atoms and no solvent was used in the simulations, i.e. the protein complex was

considered to be in vacuum.

In the potential the parameter values De = 10−4 eV and a = 1.0 Å were used.

The De value sets the overall energy scale, which is not very important in the

present study. A small value for this parameter makes the energy drift clearer. The

equilibrium distances r
(0)
ij in the potential was calculated from the conformation

in the given PDB file. Cutoff function parameters of R = 9.5 Å and D = 0.5 Å

were used. The system was simulated for 100 ps. It should be noted that the time

is shorter than in our previous study for single-chain polymers 2, which already

demonstrated the validity of the single-chain dynamics. Actually, in the present

case the number of degrees of freedom is 61, which is five times as much as in the

previous study, where the number of degrees of freedom was 12. This makes the

round-off errors in the total energy and the coordinate values pile up faster. For

this reason the simulation time was reduced.

The total energies for different values of the time step are shown in Fig. 2.

Explicit measures for the energy drift are shown in Table 1. Denoting the initial

total energy with Eini and final total energy with Efin, the energy drift is here

defined as

δE = (Efin − Eini)/Eini, (36)

As can be seen in the figure and the table, the energy drift wanders more and
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more away from zero when the time step is increased. This is a general problem for

numerical integrators. Using a temperature control method, which e.g. scales the

velocities to achieve a stable temperature, would alleviate the drift problems.
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Figure 2. Total energy as a function of time and time step size. The system consisted of three
chains with five, six, and five residues per chain, respectively. 43 torsion angles (φ, ψ, χ), and 18
oriental and shape coordinates, were used as degrees of freedom.

Table 1. Energy drift δE (in per cent) for different time steps.

Time step ∆t (fs) Energy drift δE in per cent

1 −0.02

5 −0.31

10 −0.36

15 −1.40

20 −3.28

The time evolution of some torsion angles during the last 10 ps of the simulations

is shown in Fig. 3. The evolution of the same angle (e.g.φ4) is different for different

sizes of the time step. This is an effect of using a relatively small cutoff value, 10 Å,

and using a cutoff function which goes from 1 to 0 over a distance of 1 Å. If no

cutoff function is used, then the time evolution of an angle for different sizes of the

time step is mainly affected by inherent round-off effects of the Verlet integrator.

The orientation angles and center of mass projection scalars are shown in Fig. 4-5
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for the entire duration of the simulation, with the time step equal to 10 fs. Fig. 4-5

illustrate that the individual chains are indeed moving relative to each other. It

should be noted that the orientation of the entire complex changes over time, as

demonstrated in Fig. 4(a) and Fig. 6. But the center of mass of the complex does

not move significantly, see Fig. 5(a), since there is no external force acting on the

complex.
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Figure 3. Torsion angles (a) φ4, (b) φ14, and (c) φ24 as a function of time and time step size.

Other details are as in Fig. 2.



November 21, 2011 15:8 WSPC/INSTRUCTION FILE complex-dyn

12

(a)

50

100

150

200

250

A
ng

le
(d

eg
re

es
)

0 10 20 30 40 50 60 70 80 90 100
Time (ps) ( t = 5 fs)

(b)

50

100

150

200

250

300

350

A
ng

le
(d

eg
re

es
)

0 10 20 30 40 50 60 70 80 90 100
Time (ps) ( t = 5 fs)

12

12

12

(c)

40

60

80

100

120

140

160

180

200

220

A
ng

le
(d

eg
re

es
)

0 10 20 30 40 50 60 70 80 90 100
Time (ps) ( t = 5 fs)

13

13

13

Figure 4. Orientation angles (a) θ, ϕ, χ, (b) θ12, ϕ12, χ12, and (c) θ13, ϕ13, χ13 as a function of
time, for time step ∆t = 5 fs.

The total linear momentum p and angular momentum LCM relative to the center

of mass are defined as
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Figure 5. Center of mass projection scalars (a) X(k), (b) X
(k)
12 , and (c) X

(k)
13 as a function of time,

for time step ∆t = 5 fs.

p =

Nc∑

I

NI∑

α

m(I)
α v(I)

α , (37)

LCM =

Nc∑

I

NI∑

α

m(I)
α (X− x(I)

α )× v(I)
α

= X× p−

Nc∑

I

NI∑

α

m(I)
α x(I)

α × v(I)
α

= X× p− L, (38)
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where m
(I)
α ,v

(I)
α ,x

(I)
α is the mass, velocity, and position of atom α in chain I, given

in the external (laboratory) frame, and L is the angular momentum relative to the

origin of the laboratory system. Only |LCM| as a function of time is shown in Fig. 6,

since the evolution for |p| is much more stable during the entire simulation.

The force acting on the molecule is conservative, which means that besides the

energy, the total linear and angular momenta are to be conserved. The increase

with time, as seen in Fig. 6, is due to round-off errors. The situation is similar to

what happens with the total energy in Fig. 2.
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Figure 6. As in Fig. 2, but for the total angular momentum relative to the center of mass of the

complex.

4. Conclusion

We have presented a detailed test of the implementation of the extended polyspher-

ical approach for multi-chain protein complexes. In this approach the molecules

and their motion is parametrized with torsion angles as well as oriental and other

shape-related coordinates. A static test shows that the parametrization reproduce

original Cartesian coordinates of even proteins with 15 chains. The suitability of the

parametrization for molecular dynamics simulations has been successfully tested us-

ing the velocity Verlet integrator and several different time steps. The total number

of degrees of freedom was 61, and the total simulation time was 100 ps. The largest

safest time step was found to be 5 fs, if an energy drift of less than 1% and a very

low drift in total angular momentum is desired. A time step of 10 fs also provides
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a small energy drift, but the angular momentum is more unstable in this case. The

tests presented here show that the polyspherical approach can be used for molecular

dynamics simulations, especially when the potential is written explicitly in terms of

natural degrees of freedom such as bond lengths, bond angles, and torsion angles.

Acknowledgement. K. O. E. H. is funded from the Research Grant Motions in

Macromolecular Function: New Approaches to Visualize and Simulate Protein Flex-

ibility, awarded 2008 by the Human Frontier of Science Program (HFSP).

Appendix A. First order derivatives

Now, it follows by directly differentiating u
(1)
i = R†

1uiR1, where R1 =

exp
(
χıβ̂/2

)
= α+ ıβ = cos (χ/2) + ı sin (χ/2) β̂, that

∂u
(1)
i

∂χ
=

(
∂R†

1

∂χ

)
uiR1 +R†

1ui

∂R1

∂χ
=
ı

2
(−β̂R†

1uiR1 +R†
1uiR1β̂)

=
ı

2
(−β̂u

(1)
i + u

(1)
i β̂) = β̂ × u

(1)
i (A.1)

By using this result and

β̂1I = sin θ1I sinϕ1Iu
(1)
1 − sin θ1I cosϕ1Iu

(1)
2 + cos θ1Iu

(1)
3 (A.2)

we also obtain

∂β1I

∂χ
= β̂ × β1I (A.3)

Because α1I = cos (χ1I/2) and the expansion coefficients {u
(1)
j · β1I} do not de-

pend on χ, and that because it follows from the Jacobi identity a × (b× c) +

b× (c× a) + c× (a× b) = 0 that 2α1I

[(
β̂ × β1I

)
× u

(1)
j + β1I ×

(
β̂ × u

(1)
j

)]
=

2α1I β̂ ×
(
β1I × u

(1)
j

)
, we see that the derivative of

u
(I)
j =

(
2α2

1I − 1
)
u
(1)
j + 2α1Iβ1I × u

(1)
j + 2u

(1)
j · β1Iβ1I (A.4)

with respect to χ is

∂u
(I)
j

∂χ
= β̂ × u

(I)
i (A.5)

By taking the advantage of the coordinate rep-

resentation r
(I)
i =

∑3
j=1

(
r
(I)
i · u

(I)
j

)
u
(I)
j (the expansion coefficients

{
r
(I)
i · u

(I)
j

}

depend only on the torsion angles of the Ith protein for all values of the index i),

it also follows that

∂r
(I)
i

∂χ
= β̂ × r

(I)
i (A.6)
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Analogously, we also have

∂r
(I)
i

∂χ1J
= δIJ β̂1I × r

(I)
i (A.7)

where Kronecker’s delta δIJ is one, if I = J , and zero otherwise.

Let us now evaluate ∂r
(I)
i /∂ϕ. It follows by directly differentiating

β̂ = sin θ sinϕu1 − sin θ cosϕu2 + cos θu3 (A.8)

that

∂β̂

∂ϕ
= u3 × β̂ (A.9)

As a consequence,

∂R1

∂ϕ
=

∂

∂ϕ

[
cos
(χ
2

)
+ ı sin

(χ
2

)
β̂
]
= ı sin

(χ
2

)
u3 × β̂ (A.10)

∂R†
1

∂ϕ
=

∂

∂ϕ

[
cos
(χ
2

)
− ı sin

(χ
2

)
β̂
]
= −ı sin

(χ
2

)
u3 × β̂ (A.11)

and hence

∂u
(1)
i

∂ϕ
=
∂
(
R†

1uiR1

)

∂ϕ
=
∂R†

1

∂ϕ
uiR1 +R†

1ui

∂R1

∂ϕ

= ı sin
(χ
2

)
(−u3 × β̂uiR1 +R†

1uiu3 × β̂)

= ı sin
(χ
2

)
(−R1a

(ϕ)u
(1)
i + u

(1)
i a(ϕ)R†

1) (A.12)

where

a(ϕ) = u
(1)
3 × β̂ (A.13)

The last equality follows by taking the advantage of u3 × β̂uiR1 = R1R
†
1u3 ×

β̂R1R
†
1uiR1 = R1

(
R†

1u3R1

)
× β̂R†

1uiR1 = R1u
(1)
3 × β̂u

(1)
i (and its reverse). By

explicitly writing R1 = α+ ıβ, we have ∂u
(1)
i /∂ϕ = ı sin(χ/2)[−(α+ ıβ)a(ϕ) ·u

(1)
i +

u
(1)
i · a(ϕ)(α− ıβ)− (α+ ıβ)a(ϕ) ∧ u

(1)
i + u

(1)
i ∧ a(ϕ)(α− ıβ)]. Hence,

∂u
(1)
i

∂ϕ
= ı sin

(χ
2

)
[−2ıa(ϕ) · u

(1)
i β + 2αu

(1)
i ∧ a(ϕ) + 2ıa(ϕ) ∧ u

(1)
i · β]

= 2 sin
(χ
2

)
[u

(1)
3 × β̂ · u

(1)
i β + α

(
u
(1)
3 × β̂

)
× u

(1)
i

−
(
u
(1)
3 × β̂

)
∧ u

(1)
i · β] (A.14)

or

∂u
(1)
i

∂ϕ
= 2 sin

(χ
2

)(
a(ϕ) · u

(1)
i β + αa(ϕ) × u

(1)
i − a(ϕ)u

(1)
i · β

)
(A.15)
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which further assumes the form

∂u
(1)
i

∂ϕ
= 2 sin

(χ
2

)(
αa(ϕ) + a(ϕ) × β

)
× u

(1)
i (A.16)

Because

u
(I)
i =

∑

j

f
(I)
ij u

(1)
j (A.17)

where the expansion coefficients
{
f
(I)
ij

}
depend only on the angles χ1I , θ1I and ϕ1I ,

we furthermore have

∂u
(I)
i

∂ϕ
=
∑

j

f
(I)
ij

∂u
(1)
j

∂ϕ
= 2 sin

(χ
2

)∑

j

f
(I)
ij

[
αa(ϕ) +

(
a(ϕ) × β

)]
× u

(1)
j

= 2 sin
(χ
2

) [
αa(ϕ) +

(
a(ϕ) × β

)]
× u

(I)
i (A.18)

This in turn implies (because
{
r
(I)
i · u

(I)
j

}
depend only on the torsion angles) that

∂r
(I)
i

∂ϕ
= 2 sin

(χ
2

)(
αa(ϕ) + a(ϕ) × β

)
× r

(I)
i (A.19)

The derivative ∂r
(I)
i /∂ϕ1J can be evaluated in an analogous manner. The result

is

∂r
(I)
i

∂ϕ1J
= δIJ2 sin

(χ1I

2

)(
α1Ia

(ϕ)
1I + a

(ϕ)
1I × β1I

)
× r

(I)
i (A.20)

where

a
(ϕ)
1I = u

(I)
3 × β̂1I (A.21)

Let us now evaluate ∂r
(I)
i /∂θ. We define the (non-orthogonal and planar) basis

e1 = u1 × β̂ = − cos θu2 − sin θ cosϕu3, e2 = u2 × β̂ = cos θu1 − sin θ sinϕu3. The

derivative

∂β̂

∂θ
= (cos θ sinϕu1 − cos θ cosϕu2 − sin θu3) (A.22)

can be written in this basis as

∂β̂

∂θ
= cosϕe1 + sinϕe2 = (cosϕu1 + sinϕu2)× β̂ (A.23)

This implies (by the derivation analogous to that for ∂r
(I)
i /∂ϕ) that ∂u

(I)
i /∂θ =

2 sin (χ/2)
[
αa(θ) +

(
a(θ) × β

)]
× u

(I)
i , and consequently,

∂r
(I)
i

∂θ
= 2 sin

(χ
2

)(
αa(θ) + a(θ) × β

)
× r

(I)
i (A.24)

with

a(θ) =
(
cosϕu

(1)
1 + sinϕu

(1)
2

)
× β̂ (A.25)
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The derivative ∂r
(I)
i /∂θ1J can be evaluated in an analogous manner. The result

is

∂r
(I)
i

∂θ1J
= δIJ2 sin

(χ1I

2

)(
α1Ia

(θ)
1I + a

(θ)
1I × β1I

)
× r

(I)
i (A.26)

where

a
(θ)
1I =

(
cosϕ1Iu

(I)
1 + sinϕ1Iu

(I)
2

)
× β̂1I (A.27)

Let now
{
r
(I)
l

}
form the bond tree for a protein I. Then

∂r
(J)
l

∂φ
(Ii)
jk

= δIJd
(
r
(J)
k , r

(J)
l

)
r̂
(J)
i × r

(J)
l (A.28)

where d
(
r
(J)
k , r

(J)
l

)
is one, if the coordinate φ

(Ji)
jk parametrizes a bond r

(J)
k in a

chain, which connects r
(J)
i to r

(J)
l (in that order) in the bond tree. The fact that

∂r
(J)
l /∂φ

(Ii)
jk vanishes if I 6= J can be deduced from the basis representation r

(J)
l =

∑3
j=1

(
r
(J)
l · u

(J)
j

)
u
(J)
j (the expansion coefficients

{
r
(J)
l · u

(J)
j

}
depend only on the

torsion angles of the Jth protein for all values of the index l).

Because the parametrization of an arbitrary bond vector r
(J)
i does not depend

on X
(j)
1J , we have identically

∂r
(I)
i

∂X
(j)
1J

= 0 (A.29)

for all values of the indexes.

The derivatives of the relative center of masses w.r.t χ, θ and ϕ are given by

∂X1I

∂ϑ
=
∑

j

X
(j)
1I

∂u
(1)
j

∂ϑ
(A.30)

(with ϑ = χ, θ, ϕ), where

∂u
(1)
j

∂ϑ
= b(ϑ) × u

(1)
j (A.31)

with

b(χ) = β̂ (A.32)

b(ϕ) = 2 sin
(χ
2

)(
αa(ϕ) + a(ϕ) × β

)
(A.33)

b(θ) = 2 sin
(χ
2

)(
αa(θ) + a(θ) × β

)
(A.34)

Because X1I does not depend parametrically on any other shape coordinate besides

X
(1)
1I , X

(2)
1I and X

(3)
1I , it follows that

∂X1I

∂X
(i)
1J

= δIJu
(1)
i (A.35)



November 21, 2011 15:8 WSPC/INSTRUCTION FILE complex-dyn

19

for i = 1, 2, 3, and

∂X1I

∂ϑ1J
=

∂X1I

∂φ
(Ji)
jk

= 0 (A.36)

for all values of the indexes.

Appendix B. Second order derivatives

The second order derivatives are obtained from the first order derivatives as follows.

Now,

∂2r
(J)
l

∂qn∂φ
(Ii)
jk

= δIJd
(
r
(J)
k , r

(J)
l

)(∂r(J)i /∂qn

r
(J)
i

× r
(J)
l + r̂

(J)
i ×

∂r
(J)
l

∂qn

)
(B.1)

where qn can be any coordinate in our set of coordinates.

Let now ϑ, ϑ′ = χ, θ, ϕ. Then

∂2r
(I)
i

∂ϑ′∂ϑ
=
∂b(ϑ)

∂ϑ′
× r

(I)
i + b(ϑ) ×

∂r
(I)
i

∂ϑ′
(B.2)

The derivatives ∂b(χ)/∂ϕ = ∂β̂/∂ϕ = u3 × β̂ and ∂b(χ)/∂θ = ∂β̂/∂θ =

(cosϕu1 + sinϕu2)× β̂ were derived in the previous section, ∂b(χ)/∂χ = ∂β̂/∂χ =

0, and

∂b(ϑ)

∂ϑ′
= 2 sin

(χ
2

)[
α
∂a(ϑ)

∂ϑ′
−
δϑ′χ

2
sin
(χ
2

)
a(ϑ)

+
∂a(ϑ)

∂ϑ′
× β + a(ϑ) ×

∂β

∂ϑ′

]

+δϑ′χ cos
(χ
2

)(
αa(ϑ) + a(ϑ) × β

)
(B.3)

for ϑ = θ, ϕ, where

∂a(ϕ)

∂ϑ′
=
∂u

(1)
3

∂ϑ′
× β̂ + u

(1)
3 ×

∂β̂

∂ϑ′
(B.4)

∂a(θ)

∂ϑ′
=

[
δϕϑ′

(
− sinϕu

(1)
1 + cosϕu

(1)
2

)
+ cosϕ

∂u
(1)
1

∂ϑ′
+ sinϕ

∂u
(1)
2

∂ϑ′

]
× β̂

+
(
cosϕu

(1)
1 + sinϕu

(1)
2

)
×
∂β̂

∂ϑ′
(B.5)

The Kronecker’s delta δϕϑ′ is one, if ϑ′ equals ϕ, and zero otherwise.

Because all the derivatives ∂b(ϑ)/∂ϑ1I with ϑ = χ, θ, ϕ and ϑ1I = θ1I , ϕ1I , χ1I

are identically zero, we have

∂2r
(I)
i

∂ϑ1J∂ϑ
= δIJb

(ϑ) ×
∂r

(I)
i

∂ϑ1I
(B.6)
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Also,

∂2r
(I)
i

∂ϑ1K∂ϑ1J
= δJKδIJ

(
∂b

(ϑ)
1I

∂ϑ1K
× r

(I)
i + b

(ϑ)
1I ×

∂r
(I)
i

∂ϑ1K

)
(B.7)

where

b
(χ)
1I = β̂1I (B.8)

and, for, ϑ = θ, ϕ,

b
(ϑ)
1I = 2 sin

(χ1I

2

) [
α1Ia

(ϑ)
1I +

(
a
(ϑ)
1I × β1I

)]
(B.9)

∂b
(ϑ)
1I

∂ϑ1K
= δIK2 sin

(χ1I

2

)[
α1I

∂a
(ϑ)
1I

∂ϑ1K
−
δϑ1Kχ1I

2
sin
(χ1I

2

)
a
(ϑ)
1I

+
∂a

(ϑ)
1I

∂ϑ1K
× β1I + a

(ϑ)
1I ×

∂β1I

∂ϑ1K

]

+δϑ1Kχ1I
cos
(χ1I

2

)(
α1Ia

(ϑ)
1I + a

(ϑ)
1I × β1I

)
(B.10)

where

∂a
(ϕ)
1I

∂ϑ1K
= δIK

[
∂u

(I)
3

∂ϑ1K
× β̂1I + u

(I)
3 ×

∂β̂1I

∂ϑ1K

]
(B.11)

∂a
(θ)
1I

∂ϑ1K
= δIK

[
δϕ1Iϑ1K

(
− sinϕ1Iu

(I)
1 + cosϕ1Iu

(I)
2

)
+ cosϕ1I

∂u
(I)
1

∂ϑ1K
+ sinϕ1I

∂u
(I)
2

∂ϑ1K

]
× β̂1I

+δIK

(
cosϕ1Iu

(I)
1 + sinϕ1Iu

(I)
2

)
×
∂β̂1I

∂ϑ1K
(B.12)

and

∂β̂1I

∂χ1K
= 0 (B.13)

∂β̂1I

∂ϕ1K
= δIKu

(1)
3 × β̂1I (B.14)

∂β̂1I

∂θ1K
= δIK

(
cosϕ1Iu

(1)
1 + sinϕ1Iu

(1)
2

)
× β̂1I (B.15)

Finally, we have

∂2X1I

∂qj∂qi
= 0 (B.16)

if qi and qj are in {φ
(Il)
jk , X

(k)
1K , χ1I , θ1I , ϕ1I},

∂2X1I

∂ϑ∂X
(j)
1J

= δIJ
∂u

(1)
j

∂ϑ
(B.17)
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and

∂2X1I

∂ϑ′∂ϑ
=
∑

j

X
(j)
1I

∂2u
(1)
j

∂ϑ′∂ϑ
(B.18)

The derivatives ∂2u
(1)
j /∂ϑ′∂ϑ are given by

∂2u
(1)
i

∂ϑ′∂ϑ
=
∂b(ϑ)

∂ϑ′
× u

(1)
i + b(ϑ) ×

∂u
(1)
i

∂ϑ′
(B.19)
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