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ABSTRACT

Motivation: Prediction of protein–protein complexes from the
coordinates of their unbound components usually starts by
generating many potential predictions from a rigid-body 6D search
followed by a second stage that aims to refine such predictions.
Here, we present and evaluate a new method to effectively address
the complexity and sampling requirements of the initial exhaustive
search. In this approach we combine the projection of the interaction
terms into 3D grid-based potentials with the efficiency of spherical
harmonics approximations to accelerate the search. The binding
energy upon complex formation is approximated as a correlation
function composed of van der Waals, electrostatics and desolvation
potential terms. The interaction-energy minima are identified by
a novel, fast and exhaustive rotational docking search combined
with a simple translational scanning. Results obtained on standard
protein–protein benchmarks demonstrate its general applicability
and robustness. The accuracy is comparable to that of existing state-
of-the-art initial exhaustive rigid-body docking tools, but achieving
superior efficiency. Moreover, a parallel version of the method
performs the docking search in just a few minutes, opening new
application opportunities in the current ‘omics’ world.
Availability: http://sbg.cib.csic.es/Software/FRODOCK/
Contact: Pablo@cib.csic.es
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The prediction of the structure of a protein–protein complex from
the coordinates of unbound components by docking methods is
one of the major challenges in current computational structural
biology (Bonvin, 2006; Deremble and Lavery, 2005; Gray, 2006).
Accurate predictions, properly integrated with experimental data
could give new insights into the basic principles of molecular
recognition and the mechanism of protein association, which are
key to cellular functioning. This can be particularly interesting in
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the context of structural genomics efforts. Thanks to these initiatives
and the advance of modeling, it is increasingly frequent to be
able to successfully predict the interaction of a pair of proteins at
atomic detail. Moreover, a better understanding of protein–protein
interactions will be undoubtedly useful for structure-based drug
design and other biotechnological applications.

Using a wide range of different strategies, existing protein–
protein docking algorithms are steadily improving in both reliability
and accuracy as it can be seen from the reported results of the
CAPRI blind docking experiments (Lensink et al., 2007; Mendez
et al., 2005). These docking methods generally have an initial
stage during which the components are rigidly combined. During
this stage, many predictions are generated, and later assessed in a
second refinement stage. Rescoring such large set of predictions
with more accurate approximations can eventually filter out false
positives produced in initial rigid-body searches. Adding certain
side-chain or backbone flexibility and/or constraining the search
with experimental information of the binding site are successful
strategies that significantly help the filter process.

Despite some promising results, major research effort is still
needed in order to improve existing approaches. The biggest
challenge is to combine high-accuracy energy calculations with
speed and sampling power, while being able to handle induced
conformational searches at the protein–protein interfaces. See
Bonvin (2006), Camacho and Vajda (2002), Ritchie (2008), Vakser
and Kundrotas (2008) for complete reviews of existing docking
approaches and their limitations.

Here we focus on the first stage of docking, which consists
on rigid-body orientational sampling of a ligand molecule with
respect to a fixed receptor molecule while a docking scoring
function is maximized. The 6D sampling space of the relative
orientations between ligand and receptor is huge, and therefore
computationally demanding. To efficiently tackle this search, many
of current approaches follow the Fast Fourier Transform (FFT)-
based algorithm described by Katchalski-Katzir et al. (1992). In
that approach, the molecules are represented by 3D grids that carry
information of the shape. The ligand and receptor grids are then
correlated using FFT to efficiently scan the translational space. After
the Fourier-based evaluation has been complemented by an implicit
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orientational search, a large number of docked conformations with
favorable surface complementarity can be obtained. This initial
shape-based scoring function has been further enhanced by including
additive correlation terms to consider electrostatics [FTDOCK
(Gabb et al., 1997), DOT (Moont et al., 1999) and Molfit (Heifetz
et al., 2002)], solvation [ZDOCK (Chen et al., 2003)] or even
statistical interaction potentials [PIPER (Kozakov et al., 2006)].

Despite significant progress in the FFT-based methods, there is
room for improvement in both speed and accuracy of the grid-
based scoring function. The efficiency of the 6D FFT-based search
depends on several factors. The computational cost increases with
size, scaling at O(N logN), where N is the number of grid cells. The
efficiency also decreases with the number of considered interaction
potential terms, given that the global energy is computed as a sum
of independent FFT correlation functions. Moreover, several rigid-
body searches might be performed if the flexibility is explicitly
considered or if alternative homology structures are used as docking
templates. Thus, the FFT-based search process can take several hours
or even more if the sampling is relatively large or several candidates
must be docked.

The docking efficiency can be further improved by accelerating
the rotational search using spherical harmonics (SH). In the Hex
docking correlation algorithm (Ritchie and Kemp, 2000), the
rotational docking is accelerated by correlating spherical polar basis
functions (SPF) that model the surface shape and charges of docking
molecules. Very recently, the same authors (Ritchie et al., 2008)
presented several improvements for calculating multidimensional
multi-property rotational FFT docking SPF correlations. Inspirited
by the efficiency achieved by this approach, here we have adapted
our original Fast Rotational Method (FRM) ( Kovacs and Wriggers,
2002; Kovacs et al., 2003), which was previously successfully
used to fast fit atomic structures into electron microscopy (EM)
density maps (Garzon et al., 2007), to protein–protein docking. This
approach permitted a superior efficiency and a more exhaustive
search by speeding up the three rotational degrees of freedom
using SH and a convenient formulation of the 3D rotation group.
The application of FRM to protein–protein docking has derived
in new mathematical expressions, and hence in a novel docking
methodology termed FRODOCK (Fast ROtational DOCKing).

In contrast to other approaches, FRODOCK has the advantage of
combining the capability to express the interaction terms into 3D
grid-based potentials with the efficiency of a SH-based rotational
search. The binding energy upon complex formation is approximated
by a sum of three types of potentials: van der Waals, electrostatics
and desolvation, each of which can be written as a correlation
function. These potentials are conveniently pre-calculated on a 3D
grid, using appropriate energy thresholds. The interaction energy
minima, and hence the potential docking solutions, are identified
by a new fast and exhaustive rotational docking SH-based search
combined with a simple translational scanning. A parallel version of
FRODOCK can perform the docking search in just a few minutes,
and the competitive docking accuracy achieved on standard protein–
protein benchmarks demonstrates its applicability and robustness.

2 METHODS
Global energy optimization was performed by 6D (3D rotations + 3D
translations) rigid-body exhaustive search of the orientations of a fixed ligand
with respect to a mobile receptor. The docking criterion is the minimization

of a scoring function based on the interaction energy and composed of
several terms. Considering only the rotational part, each energy term can
be calculated by a correlation function defined as an integral of the form:

E(R)=
∫

f ·�Rg (1)

where f and g correspond to the interaction potential parts of the receptor and
ligand, respectively. The operator �R denotes rotation of g by R defined by
canonical Euler anglesφ, θ andψ. On the unit sphere, the interaction potential
can be expressed in terms of SH functions, Ylm(β,λ), and its corresponding
coefficients f̂lm(r) and ĝlm(r):

f (r,β,λ)=∫
s2 f̂lm(r)Ylm(β,λ) g(r,β,λ)=∫

s2 ĝlm(r)Ylm(β,λ) (2)

where r is the radius of the unit sphere; l≥0 and −l ≤ m≤ l are the SH
degree and order, and β and λ are the co-latitude and longitude, respectively.
Instead of employing SPF functions Ritchie and Kemp, (2000), here the
SH transformation is done discretely in concentric spherical layers (like
onion shells) as previously described in (Kovacs and Wriggers, 2002). This
radialization process permits a novel volumetric description of an interaction
potential defined into a 3D grid in terms of harmonic functions.

The correlation docking function can be expressed in terms of an inverse
Fourier transform of the SH functions (Garzon et al., 2007; Kovacs and
Wriggers, 2002; Kovacs et al., 2003):

E(R)=FT−1
m,h,m′

[∑
l

dl
mh dl

hm′ Il
mm′

]
where Il

mm′ =
∞∫
0

f̂lm(r)· ĝlm′ (r) ·r2 ·dr (3)

where dl
mhn is the real coefficient that defines the matrix elements of the

irreducible representations of the 3D rotation group. This expression can be
computed very efficiently by pre-calculating such coefficients and by using
as upper limit of integration the maximum shell radius for which a given
potential has non-zero values. In addition to a very fast calculation of the
rotational docking correlation, Equation (3) permits a deep and exhaustive
rotational search. Note that rotational sampling step is limited by twice of the
bandwidth (bw) used in the harmonic expansion of the correlated potentials
[Equation (2)]. For example, a bandwidth of 32 corresponds to a sampling
rotational step of 5.6◦ which implies the scanning of more than 60 000 distinct
rotations.

This fast exhaustive rotational search combined with an implicit
translational scan was successfully employed by us to fit atomic structures
into low-resolution EM maps (Garzon et al., 2007). In that case, we
cross-correlated two electron density maps: one that corresponded to the
experimental EM map and another that corresponded to a lower-resolution
version of the atomic structure. In the case of protein–protein docking, a
receptor potential pre-calculated in a 3D grid is correlated with a ligand
forcefield property defined at their atomic coordinates. Being Li such atomic
property, the correlation contribution of the ligand, g, can be expressed as
a summatory function of the form:

∑N
i Li ·δpi, where δpi is a delta function

of the atom i centered at its coordinate position. From this expression the
spherical coefficient of the ligand can be reduced to (see Supplementary
Appendix for details):

ĝlm(r)=
N∑

i=1

Li

∫
s2
δpi(ru)·Ylm′ (u)·dσ=

N∑
i=1

Li

r2
·δri(r)·Ylm′ (ui) (4)

Integrating Equation (4) into (3):

Il
mm′ =

∞∫
0

f̂lm(r)·
N∑

i=1

Li ·δri(r)·Ylm′ (ui)·dr =
N∑

i=1

Li · f̂lm(ri)·Ylm′ (ui). (5)

With this expression we avoid the implicit calculation of the SH coefficients
of the ligand from a potential grid map as it is done with the receptor.
However, we need to perform a summatory over all the ligand atoms, which
can be costly if this number is too high. To overcome this problem and
improve the overall efficiency, the integration is done over the atoms grouped
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in the spherical layers (or shells) in where the SH transformation is defined.
Thus, Equation (5) can be transformed into:

Il
mm′ =

C∑
i=0

f̂lm(ri) ·
nCi∑
j=0

LCi
j ·Ylm′ (uCi

j ) (6)

where C is the number of layers in the spherical representation, r̄i is the
average radii of the atoms in layer i, LCi

j is the potential value (weight, charge,

etc) of atom j in the set of atoms Ci on layer i,and uCi
j is the spherical

coordinates of this atom j. The centre of the spherical radial representation
is established on the ligand centre of mass. Centering on the smallest protein
reduces the potential distortions that could be produced in the radialized SH
transforms of large proteins at points too far off the center. This is the reason
why, in the relative translational search, we considered the ligand (smallest
protein) fixed with respect to a mobile receptor (biggest protein), as opposed
to standard docking FFT algorithms. Taking into account Equations (3)
and (6), the final equation:

E(R)=FT−1
m,h,m′

⎡
⎣∑

l

dl
mh dl

hm′
C∑

i=0

f̂lm(ri)·
nCi∑
j=0

LCi
j ·Ylm′ (uCi

j )

⎤
⎦ (7)

gives us a new and efficient way to perform the rotational part of the
rigid-body docking search. Notice that for different translational points the
computation of Equation (7) only needs to recalculate the receptor SH
coefficients, f̂lm(r), the rest of the terms are pre-calculated. Moreover, it
is possible to calculate different energy terms with only a single inverse FFT
by taking advantage of the linearity of such transforms, hence reducing the
overall computational cost.

To complete the 6D exhaustive docking search, the translational search
was done implicitly by sampling uniformly the space with a fixed step
size grid. We also reduced the translational space by simple masking
procedures to prevent exploring points without physical meaning. To this
end, we only considered points outside the surface of the receptor within
a distance bigger than the minimum radius of the ligand and smaller than
the maximal ligand radius. In other words, the sampling was constrained to
avoid situations in which the ligand deeply penetrates into the receptor or in
which the ligand molecule is not even in contact with the receptor. At this
stage of presentation and validation of our methodology, we preferred this
extensive translational sampling setup to maintain the general applicability.
However, the translational space could be greatly reduced in particular if any
geometrical constraint is introduced.

FRODOCK shares the use of SH to accelerate the rotational search with
other methods such as HEX (Ritchie and Kemp, 2000). However, in addition
to the original merging of SH with grid-based potentials, our approximation
[Equation (7)] is different from other methods and quite novel in the protein–
protein-docking field.

2.1 Interaction potentials
The binding energy during complex formation was approximated by three
types of potentials: van der Waals, electrostatics and desolvation:

E =WW EW +WEEE +WSES (8)

where WW ,WE and WS weight the different contributions of the protein–
protein interaction energy terms.

The van der Waals interactions are described by a Lennard-Jones 6–12
potential with most of the repulsive part truncated by a cut-off to reduce its
extreme sensitivity to small conformational changes and hence to introduce
some tolerance to conformational flexibility. This soft potential has been
successfully used in protein–protein docking (Fernandez-Recio et al., 2002).
Thus, the receptor soft potential Pw(p) at a grid point p of atom i is given by

PW (p)=
N∑
i

P(i)
W (p) (9)

and

P(i)
W (p)=

⎧⎪⎨
⎪⎩

Po(i)
W (p) if Po(i)

W (p)≤0

Po(i)
W (p)Pmax

Po(i)
W (p)+Pmax

if Po(i)
W (p)>0

, Po(i)
W = Ai

r6
pi

+ Bi
r12
pi

(10)

where rpi denotes the distance between the coordinates of atom i to a given
grid point p,Pmax is a repulsive potential cut-off and Ai and Bi are constants.
Using this expression and considering only the heavy atoms, the receptor van
der Waals potential map was pre-computed using a generic C atom probe
with radius 2.0 Å to model the ligand presence. By computing the receptor
SH coefficients f̂lm(r) from this grid, and making use of the ligand atoms
mass as ligand scalar property (Li), the van der Waals docking contribution
for a given translational point was evaluated using Equation (7).

The electrostatic contribution was calculated in a similar way. To this end,
only the partial charges are needed for the ligand, whereas for the receptor
an electrostatic grid potential is approximated using a modified Coulomb’s
law. Such grid potential is defined by

PE (p)=
N∑
i

P(i)
E (p) where PE = qi

εrpi
(11)

where ε= 4rpi is a distance-dependant dielectric constant and qi are the
receptor partial charges. The soft van der Waals potential used here
allows certain overlap between atoms, which can result in unrealistic large
electrostatic energy terms. To alleviate this, the electrostatic values were
clamped in a range of ±10 kcal/mol.

The docking desolvation energy is defined by the transfer of surface
residues from water to protein–protein interface. Here this was estimated as a
sum of per-atomic contributions proportional to the buried solvent accessible
surface area, BSA; hence, the grid points of the receptor desolvation energy
potential were calculated using

PS(p)=
N∑
i

BSAi(p)σi (12)

where σi is the atomic solvation parameter for atom type i as previously
calculated from linear fitting to experimental octanol/water transfer energies
(Abagyan, 1997) and finally optimized for rigid-body docking (Fernandez-
Recio et al., 2004). To estimate the receptor buried surface upon binding
we modeled the presence of the ligand by locating generic probes of 1.7 Å
radius at all the grid points close to the receptor surface (defined by atoms
with solvent accessible surface area, SASA > 0). The BSA was computed
on the grid as the SASA difference with and without these atom probes.
For the L property, we utilized the SASA of the ligand. In the same
way, the desolvation contribution of the ligand with respect to the receptor
was estimated but now using its accessible surface as reference. Thus, the
total interaction desolvation energy is given by the sum of two correlation
functions as Equation (12), each of them modeling the receptor–ligand and
the ligand–receptor desolvation.

2.2 Implementation details
The method was implemented in three consecutive steps:

(1) Generation of pre-calculated grid maps: Three grid potentials
were computed from the receptor coordinates (van der Waals,
electrostatic and desolvation), whereas only one was needed from
ligand coordinates (desolvation). Several ad-hoc tools have been
developed in order to pre-compute such potential maps. Atomic
properties such as van der Waals radius, charges etc. were taken from
CHARMM 19 force field. The SASA calculations were performed
using analytical methods (Busa et al., 2005).

(2) Performing the docking 6D search: Once the grid maps were pre-
calculated, the docking was performed with a single tool called
FRODOCK, which implements the new methodology presented in
the Methods section for 6D exhaustive docking search. The rotational
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and translational sampling resolutions were fixed to 5.6◦(6×104

rotations) and 2 Å, respectively. These values were chosen in order
to have a good balance between efficiency and accuracy. Since
the translational search can eventually explore 105 points, we only
considered the best four docking predictions for each translation point
in order to avoid a large redundant set of solutions.

(3) Clustering: In each docking run, the results were clustered using a
explicit comprehensive algorithm (Kozakov et al., 2005). Briefly,
once the solution set was ranked according to their docking
correlation, we formed clusters with all ligand-docking predictions
within 5 Å RMSD distance from the first ranked solution (i.e. the
lowest energy). The members of this first cluster were removed
from the ranking, and we selected the next ranked solution as the
centre for next cluster. We iteratively repeated this procedure until a
predetermined number of clusters was achieved (to have a manageable
number we fixed it to 10 000 clusters). Thus, each of the cluster centres
will represent a different potential docking solution. Obtaining 10 000
clusters takes around 3–4 min on a standard pc. The clustering time
drops below the minute for 2000 clusters which corresponds to a
reasonable number in practical situations.

We further extended the efficiency of the method by parallelizing techniques.
The chosen docking setup that splits the exhaustive search in translational and
rotational parts is very suitable to run in parallel. Efficient rotational searches
of independent translational scanned points can be easily farmed to different
processors. Following this approach, we implemented an Message Passing
Interface (MPI) version of FRODOCK, which, as shown below, allows for
nearly linear performance gain depending on the number of processors used.

2.3 Benchmarks and parameter optimization
To test the method performance, we used the protein–protein benchmark 2.0
(Mintseris et al., 2005). This validation test set includes 84 protein–protein
interactions with available 3D structures of the complexed and unbound
forms, and contains examples of enzyme–inhibitor (E), antigen–antibody
(A) and other complexes (O). According to the extension of conformational
changes between the unbound and bound forms of the complex components,
the test cases are also classified into rigid-body, medium and difficult cases.
Since the latter are clearly out of scope of any rigid-body approximation, they
have been excluded from our analysis. The remaining 76 protein–protein
test cases (listed in Table S1) were used for testing our approximation. In
all cases, the unbound forms of the subunits were used for docking. In order
to optimize the parameters of the method, we used a random subset of the
validation benchmark as training set. This set was formed by 15 test cases
in which we found at least an acceptable solution within the top 1000. To
balance its composition, five test cases of each class (E, A, O) have been
considered.

Some of the most important parameters were the relative weights of the
interaction energy terms WW ,WE and WS , for which we found optimal
values of 1.0, 0.3 and 0.5, respectively. As expected, the optimization
results suggested that the most important energetic contributions to the free
binding energy in our rigid-body protein–protein docking are, in decreasing
order: shape, desolvation and electrostatics. Other parameters, such as the
radialization step size of the spherical layers used in the SH expansions
(fixed to 1 Å), the bandwidth (32) and the translational step size (2 Å), were
chosen to have a good efficiency without compromising the accuracy of
the method. Bandwidths above 32 quickly deteriorate the performance and
they did not improve the docking results. Note that for this type of initial
rigid-body docking, a detailed shape description is probably not required,
and certain degree of smoothness is even desirable in order to model small
structural changes upon binding. To effectively test the method, the docking
was repeated 50 times for each complex, with distinct random initial ligand
orientations, thus avoiding pre-alignment situations with reference/original
complexes.

An additional validation benchmark was compiled with available rigid-
body test cases of the latest CAPRI experiments, which were not already
included in the Weng’s benchmark. This additional benchmark included
targets T11 and T12 of the cohesin–dockerin complex of the cellulosome
(PDB ID 1OHZ); T13 of the SAG1-antibody complex (PDB 1YNT); T14
of the protein Ser/Thr phosphatase-1 bound to MYPT1; T18 xylanase-TAXI
complex (PDB ID 1T6G); T19 of ovine prion-Fab complex (PDB 1TPX);
T25 of Arf1-GTP-ARHGap10 (PDB 2J59); T26 TolB/Pal (PDB 2HQS) and
T27 Hip2 bound to a UBC9 (PDB 2O25). For targets T11 and T19, homology
models previously built by ICM were used as ligand probes [details of
modeling are described in (Fernandez-Recio et al., 2005)].

The ligand (RMSDL) and interface (RMSDI) root mean square deviations
were computed following CAPRI criteria (Mendez et al., 2003). For
computing the RMSDL, the receptors were superimposed using all the Cα
atoms, with the exception of the T3 case. In this case only the binding
domain of the ligand was considered for the RMSDL calculation, as the other
domain, which is not relevant for the interaction, is moved with respect to
the bound reference state. A ligand or receptor residue is considered to be
at the interface if any of its atoms is within 10 Å of an atom of the receptor
or the ligand, respectively. Contacts are defined in the same way but within a
shorter distance of 5 Å. None of the interface or contacts residues that fulfill
such distance restraints have been excluded by any other criterion.

3 RESULTS
The global success rates shown in Figure 1 provided a first overall
view of the performance of our new docking approximation on
the unbound 76 targets from Weng’s benchmark. We had on
average a probability of 90% to find at least an acceptable solution
(RMSDL ≤10 Å) within the 10 000 predictions made for all 50
runs of each docking case, and a probability of 67% for finding
a medium quality solution (RMSDL ≤5 Å). These success rates
smoothly diminished to 78 and 53% for finding acceptable and
medium solutions, respectively, within top 1000. When only the top
100 were considered, FRODOCK maintains excellent success rates
of 51 and 30%, respectively. In a closer view, it can be seen a clear
different behavior depending on the complex type: whereas at least
one acceptable solution can be found below the first 500 predictions
(100% success rate) for enzyme–substrate cases (Fig. 1A; E, solid
line), for antibody–antigen (dotted lines) the success rate drops to
78% for top 1000, and it falls even more (63%) for the other type (O,
dashed line). These differences are more accentuated when looking
at the top 100, in which we found success percentages of 92, 50
and 22% for E, A and O categories, respectively. It is well known
that surface complementarity, which is the main docking driving
force in this method (as in the majority of rigid docking methods),
is a stringent criterion with enzyme–substrate and antibody–antigen
docking cases. Nevertheless, it is much less effective with the O
type docking cases, which contain the most heterogeneous and
difficult test cases of the three categories. Similar observations can be
made by looking at RMSDI instead of RMSDL (see Supplementary
Fig. S1).

Several acceptable solutions have been found in almost all
docking cases (see Supplementary Table S1 and S2). There are
only five known difficult cases (1BGX, 1I4D, 1SBB, 1HE8, 1IB1)
in which practically no acceptable solutions were found with
RMSDL ≤10 Å or RMSDI ≤4 Å within 10 000 default predictions
yielded by FRODOCK. There are also poor accuracy cases such
as 1KLU in which some of the predictions are lost because they
are ranked beyond the considered 10 000 predictions and/or their
RMSD fell out of the limits to consider the solution as acceptable.
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Fig. 1. Success rates obtained for the different types of unbound test cases
included in the Weng’s benchmark: enzyme–substrate (solid line), antibody–
antigen (dotted), other (dashed) and average (grey). (A) The success rate is
defined as the percentage of cases where at least an acceptable solution with
a RMSDL ≤10 Å is detected with rank smaller than the number given in
abscissas. (B) Here the success rate is defined to follow the medium solution
assessment of CAPRI contest, i.e. have a RMSDL ≤5 Å.

Variations in the rank, RMSD, and fnat can be also observed, showing
the method dependence on the initial positions. Nevertheless, only
relatively small variations were typically detected. For example
for E cases (Table S1), average standard deviation values of 13,
0.55 and 0.04 are obtained for rank, RMSDL and fnat, respectively.
As expected, this variation becomes larger as predictions are
less accurate; for O cases these values are 306, 0.89 and 0.06,
respectively. However, in most of the cases, the predictions are
essentially the same in all the 50 runs, thus demonstrating the
robustness of the method. Only in a few cases, such as 1JPS, 1GCQ
or 1MLO, different solution sets can be obtained with an average
RMSDL variation larger than 3 Å. This, otherwise relatively minor,
degeneration of solutions is likely a result of grid interpolation errors
amplified by the clustering of the solutions.

We tested the comparative efficiency of FRODOCK in the case
HyHel-5/lysozyme, previously used as a timing reference in a
very recent version of HEX (Ritchie et al., 2008), which to our
knowledge is the fastest protein–protein exhaustive docking search
available. Our approximation is 10% slower than Hex, which takes
∼27 min to perform this docking in a standard 2.2 MHz linux
workstation. This docking tool slightly outperforms FRODOCK,
most likely because it uses a more efficient two-stage protocol using
3D shape FFT scans with bandwidth 20 followed by 1D shape

plus electrostatics rescoring with a bandwidth 30. Nevertheless, if
FRODOCK employed the two equivalent shape and electrostatic
terms used in HEX, the docking time could be reduced to 18 min. In
this particular case, FRODOCK found the first acceptable solution at
positions 32th and 30th, with and without desolvation, respectively.
The different nature of the docking methodology and the diverse
parameters employed, including different size of the translational
and rotational steps, made difficult a thorough comparison of the
docking performance. Nevertheless, it is clear that both methods
have comparable performance at least in this representative example.
On the same case, the FFT standard ZDOCK (versions 2.3.1 or 3.0.1)
docking tool takes more than two hours (using a dense sampling
with -d option). In any case, we implemented a parallel version that
can take advantage of multiple processors. This version can speed up
the docking calculations several folds (see Supplementary Fig. S2).
HEX could follow similar strategy but its two-step protocol will be
slightly more complex to parallelize than our direct translation space
split in multiple processors.

3.1 Validation of docking method on CAPRI targets
For validation purposes, we also tested how FRODOCK would
have performed in the CAPRI experiments. For that, we applied
our docking protocol to the CAPRI targets 11, 12, 13, 18, 19,
25,26 and 27. In four of nine of the CAPRI test cases, the method
predicted at least one acceptable solution within the top 10 (Table 1).
Moreover, two of these cases (T19, T25) achieved medium quality
by CAPRI standards, and another two (T12, T14) even achieved
high accuracy. The goodness of these predictions can be observed
in Figure 2B, D, F and G. Acceptable solutions for targets T11
(Fig. 2A) and T13 (Fig. 2C) were also found at 26th and 23rd
position, respectively. In the three remaining cases we still found
acceptable solutions within the top 500 positions (Fig. 2E, H, I).
From these solutions, and using further refining protocols, it is
feasible to improve their ranking to top positions. The simplest and
most common way to achieve this would be through the screening
of the predictions with available experimental information of the
complex. For example, in the difficult case of TAXI-Niger Xilanase
complex (T18), the successful CAPRI predictions were obtained
using an experimental restraint for residues Glu79 and Glu170,
which were known to be at the interface. If we use this restraint
to filter out the FRODOCK solutions without these two residues at
the interface, the first prediction is now ranked 10th with a RMSDI of
2.6 Å. Following a similar strategy, we obtained top ranked solutions
for targets T26 and T27 (see details in Table 1). In summary, these
results validate the excellent performance of our initial exhaustive
search-docking tool.

4 DISCUSSION
We have developed an initial-stage rigid-body docking program
called FRODOCK, which optimizes van der Waals, desolvation, and
electrostatics interaction potentials by using a new fast rotational
docking algorithm based on SH combined with a systematical
translational search.

We have shown that, on a standard benchmark set, our new
approach can place an acceptable solution (RMSDL ≤10 Å) within
the top 100 solutions in more than half of the cases (51%), and within
the top 20 solutions in almost a third of the cases (30%). These results
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Table 1. Results obtained with CAPRI test cases

Ligand RMSD Interface RMSD

<10 Å <5 Å <4 Å <2.5 Å

N Rank RMSDL fnat fnot N Rank RMSDL fnat fnot N Rank RMSDI fnat fnot N Pos RMSDI fnat fnot

T11 16 26 9.81 0.14 0.59 – − – – – 6 241 3.01 0.37 0.49 − − – – –
T12 13 1 1.94 0.96 0.33 1 1 1.94 0.96 0.33 9 1 0.89 0.96 0.33 3 1 0.89 0.96 0.33
T13 70 23 7.90 0.40 0.57 5 68 3.91 0.72 0.21 87 23 2.66 0.40 0.57 18 68 0.94 0.72 0.21
T14 8 1 1.47 0.54 0.16 1 1 1.47 0.54 0.16 5 1 0.77 0.54 0.16 2 1 0.77 0.54 0.16
T18 6 261 7.36 0.70 1.10 – − – – – 8 261 2.62 0.70 1.10 1 3049 1.95 0.59 0.63
T18a 2 10 7.36 0.70 1.10 – − – – – 3 10 2.62 0.70 1.10 1 39 1.95 0.59 0.63
T19 13 10 6.86 0.44 0.48 1 401 4.89 0.73 0.19 16 5 3.45 0.46 0.79 1 401 1.24 0.73 0.19
T25 31 3 3.36 0.69 0.21 4 3 3.36 0.69 0.21 35 3 1.63 0.69 0.21 9 3 1.63 0.69 0.21
T26 11 224 3.92 0.29 0.33 2 224 3.92 0.29 0.33 9 224 2.08 0.29 0.33 3 224 2.08 0.29 0.33
T26b 7 32 3.92 0.29 0.33 2 32 3.92 0.29 0.33 7 32 2.08 0.29 0.33 3 32 2.08 0.29 0.33
T27 25 468 3.83 0.59 0.24 1 468 3.83 0.59 0.24 46 335 2.25 0.61 0.63 46 335 2.25 0.61 0.66
T27c 4 2 8.31 0.41 0.59 – − – – – 9 2 2.33 0.41 0.59 3 3 1.51 0.56 0.63

N denotes the number of solutions, and rank the position of the first solution found within the RMSD limit shown in the top of the column. The fnat and fnot , the interface ratios
were calculated as described in Mendez et al. (2003). In all cases the RMSDs were calculated using C atoms.
aFilter results of T18 considering only the predictions in which residue E70 of TAXI is at <5 Å from residue E179 of Niger Xilanase.
bFilter results of T26 considering only the predictions in which residue H246 and T292 of TolB are present in the complex contact interface.
cFilter results of T27 considering only the predictions in which residue K14 of Hip2 is at <5 Å from residue C93 of Ubc9.
Test cases in bold had at least a solution ranked in the top ten predictions.

are very competitive, as compared to other exhaustive protein-
protein docking approaches. In a comparative blind docking on the
same cases of the Weng’s benchmark, HEX found 16 acceptable
solutions within the top 20 orientations, and 24 cases within the top
100 (Ritchie et al., 2008). FRODOCK results were better, finding 20
and 38 acceptable solutions within the same ranges (see Table S1).
HEX also significantly improved the number of acceptable solutions
by constraining the search to focus the calculation around the
receptor binding site, e.g. up to 28/42 with one constraint. Despite
evident benefits of employing constraints during the search, in terms
of complexity reduction and enhanced performance, in this work we
have chosen to focus on the most general and challenging problem
defined by the blind 6D exhaustive docking search.

Apart from procedural differences, ZDOCK and FRODOCK have
similar docking accuracy. On the 76-case docking test used here,
ZDOCK 2.3 identified 14 cases with a hit ranked in the top 20
orientations, and 24 cases with a hit in the top 100 [see Table 1 of
Pierce and Weng (2007)], where hit is defined as a solution having
an RMSDI ≤2.5 Å from the complex reference structure. Here we
obtained 13 and 24 cases (see Table S2), respectively, which are
comparatively very similar. In addition to shape, electrostatics and
desolvation, ZDOCK 3.0 (Mintseris et al., 2007) also considers
statistical pair potentials, which clearly improved the success rates
to achieve 19 cases with a hit within the first 20 predictions
[Table II of Pierce and Weng (2008)]. However, the success rates
for hits and near-hits (RMSDI<4 Å) in the top 100 of ZDOCK 3.0
[Figure 1 of Pierce and Weng (2008)] and FRODOCK (see Fig. S1
of Supplementary Data) are both very close to ∼50%. The reason
of this ZDOCK over-performance obtaining top 10 hits can be also
partially attributed to procedural differences such as the use of search
constraints (ZDOCK 2.3 blocks non-CDR regions in the antibody–
antigen cases), the definition of interface residues in the evaluation

(we strictly follow CAPRI convention), statistical differences in the
number of runs (we explore 50 distinct random poses per case)
and different sampling sizes (6◦ and 1 Å for ZDOCK, 5.4◦ and
2 Å for FRODOCK). However, the considerations of statistical pair
potentials have proven to be a successful strategy to improve the
number of near-native docked conformations (Kozakov et al., 2006;
Mintseris et al., 2007). Therefore future versions of FRODOCK will
pursue its inclusion. Compared to pyDock (Cheng et al., 2007), from
which FRODOCK inherits part of the potential term definitions, we
found again similar performances. Using a combined set of docking
poses previously generated by FTDOCK and ZDOCK in a similar
benchmark (with four fewer cases than here), pyDock was able to
find 23 cases with acceptable solutions within the top 20 orientations,
and 35 cases within the top 100. The presented approximation
yielded slightly worst results, but the advantage is that they were
directly obtained from a fast exhaustive docking search.

The robustness of this novel docking tool was confirmed on
another benchmark formed by CAPRI contest test cases. From the
exhaustive search, in four cases we obtained predictions within
the top 10 and in other two we obtained very close top positions.
The remaining three cases can improve their ranking (below
500 positions) to top positions simply by filtering with a few
experimental restraints. Taking into account that FRODOCK is an
initial exhaustive search tool, these results are quite promising.

Another advantage of this method is its efficiency. The sequential
version of FRODOCK is slightly slower than HEX, the fastest
exhaustive docking approach that outperformed the classical
translational FFT-based methods. Nevertheless, a parallel version
of FRODOCK, which can take advantage of multiprocessor
architectures and the newer wave of multi-core processors, reduces
several folds the docking time. Note that there are much faster
alternatives, e.g. Patchdock (Schneidman-Duhovny et al., 2005),
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Fig. 2. Docking predictions for rigid-body CAPRI targets T11 (A); T12 (B); T13 (C); T14 (D), T18 (E), T19 (F), T25 (G); T26 (H) and T27 (I). The orientations
of predicted ligand (in red) and the corresponding crystal structure (in green) are shown after superposition of their receptors (surface representation in gray).
The displayed predictions correspond to the first ranked acceptable solution of Table 1.
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but they do not perform an exhaustive search, and therefore there is
always the possibility of losing the correct docking pose.

In summary, the competitive docking accuracy and efficiency
achieved by our approach can eventually open up new application
windows, especially regarding large-scale structural modeling of
protein complexes (Aloy and Russell, 2006; Zhu et al., 2008). In
this context, a tool capable of reducing the protein–protein docking
search to a few minutes will be critical to effectively address
future high-throughput approaches. Further method improvements
will include merging with scoring protocols such ICM (Abagyan
and Totrov, 1994) and pyDock (Cheng et al., 2007), together with
local refinement and rescoring of the atomic coordinates of the
FRODOCK predicted complex in order to generate more realistic
solutions.
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