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An optimized self-organizing map algorithm has been used
to obtain protein topological (proteinotopic) maps. A neural
network is able to arrange a set of proteins depending on their
ultraviolet circular dichroism spectra in a completely
unsupervised learning process. Analysis of the proteinotopic
map reveals that the network extracts the main secondary
structure features even with the small number of examples
used. Some methods to use the proteinotopic map for protein
secondary structure prediction are tested showing a good
performance in the 200—240 nm wavelength range that is
likely to increase as new protein structures are known.
Key words: neural networks/prediction/secondary structure/
unsupervised learning

Introduction

The knowledge of the secondary structure of a protein has great
importance in the study of protein functionality. The structures
of some hundreds of proteins have been completely resolved by
analysing the X-ray diffraction patterns of the crystallized
molecule. However, crystallization of a protein is a difficult and
not always feasible task. Therefore, techniques for prediction of
secondary structure from more readily measurable protein
characteristics have been developed.

A first approach estimates protein structure from amino acid
sequence, since the secondary structure of a protein region can
be taken exclusively as a function of its amino acid composition.
In turn, these methods can be subdivided into those which use
only statistical methods and those which incorporate physico-
chemical theory.

Some other methods have been proposed to estimate the
secondary structure of a protein in solution. They are based on
the dependence of the optical activity of proteins between 170
and 240 nm on the peptide chain, with almost no influence of
the side chains (except for some contributions of the aromatic
amino acids) (Hennessey and Johnson, 1981; Manavalan and
Johnson, 1983; Perczel er al., 1991). The problem is finding the
correspondence between the circular dichroism (CD) spectra and
the percentages of secondary structure. Classically, the spectrum
of a protein is assumed to be the result of the addition of the
effects produced by regions with different secondary structure
conformations (e.g. «-helix, B-sheet and random coil).

There are statistical methods that compute the secondary
structure following the latter model (for a review see Yang ez al.,
1986). Some of them use linear combinations of reference spectra
of proteins, with 100% «-, 8- or random structure, measured
from model polypeptides. Others use linear combinations of
spectra of proteins whose secondary structure is known from X-
ray diffraction patterns analysis (Hennessey and Johnson, 1981;
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Provencher and Gléckner, 1981; Manavalan and Johnson, 1987;
Menéndez-Arias et al., 1988; van Stokkum et al., 1990).
Although these methods are fairly successful and their use widely
extended, they sometimes give negative percentages of 3-structure
or predict dissimilar structures for quite similar spectra. The
assumption of a linear summation of the fragment spectra is not
completely correct: the CD values of a polypeptide do not only
depend on the relative quantities of structure, but aiso on the
length of the chain segments with different secondary structures;
also, the interactions between amino acids far off in the sequence
(tertiary structure interactions) influence the CD values.

The failure of the classical statistical methods suggests the use
of non-linear methods like neural network algorithms that are
able to perform learning from examples and to generalize from
the learned data.

Neural networks have become an increasingly used tool in the
field of protein structural and functional analysis (see a recent
review of Hirst and Sternberg, 1992).

Neural networks with back-propagation learning have been
shown to be useful in obtaining mapping between sequence and
both protein secondary structure (Qian and Sejnowski, 1988;
Holbrook ez al., 1990; Kneller et al., 1990) and protein tertiary
structure (Bohr er al., 1990), in recognizing other protein
characteristics (Holley and Karplus, 1989; Muskal et al., 1990,
Fessenden, 1991) and for protein homology analysis (Bohr et al.,
1988; Petersen et al., 1990).

Recently Bohm er al. (1992) have used back-propagation
learning from CD spectra of proteins in dissolution for secondary
structure prediction purposes, improving the previous results in
the calculation of the structure. Nevertheless, this kind of network
could not have a generalization capability in the calculation of
other proteins since the number of connections in the network
exceeded by far the advisable empirical ratio examples/
connections for this kind of network (Rumelhart and McLelland,
1988).

Since in this problem only a small number of examples
(proteins) is available and there is a great amount of information
for every example (data spectra values), an unsupervised learning
algorithm like Kohonen’s self-organizing map (SOM) (Kohonen,
1982, 1986, Kohonen et al., 1984) seems to be more appropriate.
Kohonen developed this algorithm, inspired by the self-
organization of the topological maps of the sensorial nervous
system during the development of an amimal. It compresses a
training set of high-dimensional vectors to low-dimensional ones
arranging the set of vectors on a map. This arrangement depends
on the features implicit in the set of training vectors that the
network is able to extract. This algorithm has been used to classify
proteins using either protein sequences (Ferrdn and Ferrara, 1991)
or protein ultraviolet CD spectra (Merelo er al., 1991a,b). In
the latter case, the SOM algorithm main parameters were
optimized to obtain maximum efficiency and the extracted
features were strongly correlated with three types of secondary
structure.

In this paper, the term proteinotopic mapping is introduced
to design the classification of proteins in a bidimensional map.

383



M.A.Andrade et al.

The optimized SOM algorithm is used proving the invariance
of the proteinotopic mapping previously described (Merelo et al.,
1991a,b). Several methods to evaluate these maps are proposed.
From this evaluation the secondary structure map corresponding
to a concrete proteinotopic map is obtained. It allows the
prediction of the structure of problem proteins not included in
the training set used to form the proteinotopic map. Finally, in
order to compare the SOM methods to other methods, they were
tested with several sets of example proteins, making several maps
for every set and finding a significant invariability in the deduced
structure for each problem protein. In addition, this method
calculates a theoretical spectrum according to the prediction and
gives an estimation of the error in the values of the determined
secondary structure.

Materials and methods
Architecture of the network

We consider a network proposed by Kohonen to perform a
dimensionality reduction of the input signal patterns (Kohonen,
1990). In this paper, each input signal corresponds to one protein
spectrum, an r-dimensional vector (35 for k=1,.. s,
s being the total number of pattern samples of the training set)
whose components are the CD values at each wavelength. We
want to reduce a spectrum vector to a structure vector, whose
components are the «-, (§- and random percentage values.
Actually, this vector has only two independent components since
the sum of the three components is one.

The network has an input layer consisting of # neurons, one
for each of the corresponding components of the input vectors
and a second layer consisting of a lattice of m X m neurons. The
input layer is connected to every lattice neuron (N for i,
J =1, ... ,m). The connections from the input layer to an Nij

—

neuron are described by an n-component weight vector, Wj;.

In this work, the input vector has 41 components corresponding
to CD spectra values for wavelengths from 200 to 240 nm. Data
above 240 nm is not used, since in this part of the spectra there
is no significant contribution of the peptide bond. But, the
limitation of the analysis of the CD data to values above 200 nm
could be discussed since it has been shown (Toumadje et al.,
1992) that extending the analysis down to 168 nm shows an
improvement in the prediction allowing the determination of
different 3-structures.

However, most of the functional protein studies use
physiological media in order to measure, for example,
conformational changes associated to either activity-changes or
other functional characteristics. These experimental conditions,
frequent in a biochemistry laboratory, do not allow access to CD
data below 200 nm due to media absorption. Therefore, a method
that does not need low wavelength CD values seems to be worthy.
Classical statistical methods fail when this part of the spectrum
(185—200 nm range) is not used.

Hence, the 200—240 nm range is not reliable for the
determination of different 3-structures. According to Manavalan
and Johnson (1985) and Perczel et al. (1991) the information
content of the spectrum truncated at 200 nm allows the calculation
of only three secondary structure fractions (i.e. it only contains
two independent variables). This circumstance has led to the use
of a neural network that makes a two-dimensional mapping of
the features of the CD spectra used as an example.

As a training set, 24 CD input vectors have been used [see
Yang eral. (1986) for references of the spectra and the
determination of the secondary structure values from the X-ray
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results]. Eighteen of them correspond to proteins whose
secondary structure is known. Three are the spectra of a synthetic
polypeptide, poly(L-lysine), whose CD spectra at different pH
and temperature in aqueous solution is used as a model system
for «-, § and random conformation. The remaining three are
the reference spectra of «-, 8- and random coil conformation
structures based on 15 proteins of known structure taken from
Chang et al. (1978).

The network is able to interpolate among the given spectra,
but not to extrapolate. So, a complete structure map could not
be obtained unless spectra of pure secondary structure are
included in the training set.

A square lattice of 13 X 13 neurons was used (following
Merelo et al., 1991a,b).

Learning rule

The weight vectors are initialized with small random values and
may take continuous values. Each time an input pattern (X, ) is
presented to the network, a winning lattice neuron, i.e. the one
whose weight vector W is the closest to X, , is chosen. Then,
the weight vectors of both the winning neuron and its
neighbourhood are updated making them closer to X, with the
following rule:

Wit + 1) = Wy + alX, — W) )

where «(f) is a time-dependent parameter that is decreased to
impose convergence on the weights. Its value is calculated in
the following way:

o) =

o — kyt, for 0 <t <y

)
og — kg, for g <t < py

where k; 1s a constant that describes how fast o is decreased and
oy 1s the initial «-value.

For the neighbourhood of a lattice neuron, a square region of
the lattice centred in that neuron is taken. At the beginning of
the self-organizing process, the side of this square region 1s taken
to be half the lattice side. The side of this square is linearly
decreased to one from ¢t = 0 to r = 1. The learning ends at
1 = [2.

In each step of the algorithm all examples are successsively
presented to the network. Since there are many more lattice
neurons than samples, as time progresses, a self-organizing
process occurs and clusters of neurons tending to equal their
weight vectors to one of the spectrum vectors appear.

To test the evolution of the self-organization of the map the
distortion parameter (D) is used. This parameter is defined as
the sum of the distances from every input vector to the weight
vector of its corresponding winning neuron (Merelo et al.,
1991a). The logarithmic decrease of the D value indicates that
a healthy self-organization process is taking place.

In this case, since the initial weight values are taken in a random
fashion, different runs of the algorithm yield different
proteinotopic maps. However, a local similarity could be
observed, i.e. proximal neighbour relationships are maintained.
The most striking result is that neurons of different corners of
the lattice approximate their weight vectors to the six spectrum
samples corresponding to pure structures and to those examples
of proteins with high values of one of the structures: one corner
to high a-values, another one to high §-values and another one
to high random coil values. Therefore, it can be assumed that
the weights of a given neuron at the end of the learning process
must be some function of the structures of manv of the data



proteins. A problem arises: how can the secondary structure map
corresponding to a given proteinotopic map be made?

Evaluation of the map

A structure map can be made, assigning to each neuron the
structure percentages of the sample protein whose CD spectra
is the closest to the weight vector of that neuron (see an example
in Figure 2a). The map obtained clearly shows how the neurons
of the corners tend to point to proteins with extreme secondary
structure values and how close neurons tend to point to proteins
with similar secondary structure. The prediction of the structure
percentages of a problem protein not included in the training set
is made taking the structure values of the neuron which has the
closest weight vector to the CD spectra of that problem protein.

In this case, the structure values of the sample protein closest
to this neuron are taken. Nevertheless, it should be taken into
account that a neuron could have come to an intermediate
situation, in which that neuron had not chosen one example
protein or another, reaching a compromise situation. Therefore,
the prediction of the structure of a problem protein could be
improved if the participation of more than one protein example
in the structure values pointed by a lattice neuron is considered.
Then, the expressions to compute the map values («;, By rip)
of a given neuron Nj; for a set of g sample proteins are the
following

n n n

P&, bij = E PiBr T = E
=1 k=1 k=1

PR (3)

where p, stands for the participants of each sample protein in
the characteristics of the considered neuron and «,, 8, and r,
are the secondary structure percentages of the kth example
protein.

The normalization of the coefficients ay, b; and ry gives the
structure values

Q= a,‘j/s, '8’] = bij/s7 RU = r,--/s (4)

where s = a,-j + bl/ + r,J
Several methods to calculate, the p, values for every N; can
be proposed. One of these methods is to take the structure values
corresponding to the closest CD example, which can be described
as
1 for the closest protein

Pk = 1 0 otherwise

But other methods could be defined, namely, the distance method
and the rank method. In both, for a considered neuron with a
concrete weight vector, the proteins are ordered depending on
the euclidian distance of their CD spectra to that weight vector.
(i) Distance method. The structure values of those / closest
proteins weighed with their distance are considered and their
py values are:
1/d, for the [ closer proteins

P = 1 0 otherwise

d, being the euclidian distance between the weight vector
and the kth protein vector.
(i) Rank method. The structure values of the [ closer proteins
are weighed with their rank order and the p, values are
1/n, for the [ closer proteins

Pk = ) 0 otherwise

where ny is the rank order of the sample CD spectrum X,
as compared with the weight vector of the considered
neuron.

Structure prediction using a neural network
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Fig. 1. Representation of the Pearson correlation coefficient, r, versus the scope
of the method, /, for the distance method (1) and the rank metod (*). Each point
corresponds to the mean over a 100 estimations of the training set structures.
Correlations for the calculated (a) a-, (b) 3- and (¢) random values are shown,
The Pearson correlation coefficient is defined as

r = (LXY, = DXZYMIEX? — (DX)*n] ¥ (LY} — (DY) ]}

where X; and Y; are the experimental and calculated values respectively and n
is the number of samples studied.
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The parameter [ describes the scope of the method. For
example, the two proposed methods are the same for [ = 1, since
this implies that only the closest protein is considered in the
evaluation of the structure pointed out by a given neuron. In
principle, with a large / value more information is extracted from
the proteinotopic map, as more sample proteins are considered.
On the other hand, the increment of the / value has a smoothing
effect, which is more pronounced at the extremes of the map.
The loss of the extremes is critical, since the estimation of the
structures of problem proteins close to these extreme values will
be less accurate.

Results

The effect of the [ value in both the distance and rank methods
has been described in Figure 1. There, the accuracy of these
methods in the prediction of the structure of problem proteins
of known secondary structure (but obviously not included in the
sample set) is represented versus the [ value. The influence of
increasing ! is stronger in the distance method than in the rank
method, since the d, values for the further proteins are quite
similar and the whole group of sample proteins takes a great part
in the composition of the different p,, leading to flat maps

Fig. 2. A proteinotopic map was made, training the network with the set of 24 spectra except that of the myoglobin. (a) The three structure maps made from
the proteinotopic map, assigning to cach neuron the structure percentage values of the closest protein. The height of the surface respresents the structure value
and the x and y axes stand for the lattice neurons. The neurons of the upper-left corner have high ce-values, those of the upper-right comer have high 5-
values, and those of the lower-left comer have high random values. (b) Estimated structure maps made from the same proteinotopic map using the distance

method with / = 2.
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useless for estimation tasks. In general, the distance method has
better performance than the rank method. For the former method
an optimal / value can be empirically observed ([ = 2). Hereafter
this method will be used.

An example of the application of the distance method is shown
in Figure 2b. The main features of the maps with / = 1 are
maintained, but the sharp points have been smoothed out.

In order to illustrate how the method works let us suppose that
we want to estimate the structure values of the myoglobin
(¢ =079, 8 =021 and r = 0.00). First, the network is
trained with the set of protein examples (except the myoglobin
spectrum). Then the neuron whose weight vector is the closest
to the myoglobin spectrum vector (N;o3) is chosen. The
myoglobin spectrum and the winning neuron weight vector are
represented in Figure 3 with squares and with a continuous line
respectively. The proteinotopic map formed in the learning
process has a neuron with a weight vector close to that of the
myoglobin. This weight vector has been obtained from inter-
polation among the learned examples. There are no such similar
spectra in the training set. The closest sample spectrum to that
neuron is the pure «-reference spectrum (represented in Figure
3 by a long-dashed line). Note that this spectrum is very different
from the myoglobin spectrum. Then, using the map represented
in Figure 2a the structure values of that spectrum (o = 1.00,
8 = 0.00 and r = 0.00) would be assigned to myoglobin,
obtaining considerable erroneous structure values.

The results can be improved by making the map taking into
account two sample proteins instead of one (/ = 2). In this
example, the second closest spectra to the N|q4 neuron is that
of the parvalbumin (represented in Figure 3 with a short-dash
line). The distances of these two spectra to the weight vector of
the N,q 5 neuron give the normalized coefficients p; = 0.52 and
p> = 0.48 respectively. Now, the structure values pointed out
by the N3 are o = 0.82, § = 0.02 and r = 0.16 and thus
these values would be assigned to the myoglobin. The interpolated
spectrum between the pure a-reference and parvalbumin spectra
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Fig. 3. CD spectrum of myoglobin (—). Weight vector of the winning neuron
for myoglobin in the proteinotopic map calculated for Figure 2 ([). CD reference
spectra of ce-conformation (---), parvalbumin(— — —) and the interpolated spectrum
among these (/).

Structure prediction using a neural network

(represented in Figure 3 with triangles) is calculated using the
Py values:

2

Iy = L
k=1

POl (5)

where [0],(\) is the CD spectrum of a sample protein k.
Although the spectra of the more similar sample proteins and
that of the interpolated spectrum are very different to those of
both the winning neuron and the problem protein, the resulting
structure values are near the real ones.

In Figure 4, the spectra of the winning neuron in the estimation
of each of the 18 proteic examples are shown. The spectra are
the means for 20 algorithm runs. The problem protein was
excluded from the training set in all cases. The worst results are
obtained with the trypsin inhibitor, concanavalin A and
carboxypeptidase A.

The results of the distance method, with / = 2 in the estimation
of the 18 proteic examples, are shown in Table 1. The accuracy
is quite different from one protein to another. The standard devia-
tion values are shown only to indicate that the method is quite
invariable (even when it fails). The worst calculated percentages
are those of the concanavalin A, elastase and cytochrome c.

One important result comes up from Figure 4 and Table I and
it is explained through Figure 5. There, the mean absolute error
in the three structure calculated values is plotted, against the
square distance from the real spectra to the winning neuron. It
can be observed that in spite of the dispersion of the points, it
is possible to find several distance thresholds that allow us to
determine a maximal error value (e.g. if the square distance is
below 66 then the absolute error 1s below 0.12). However, large
distances do not necessarily mean bad estimations. For example,
the estimation of the papain structure is quite good (see Table
I) but the calculated spectrum is rather poor (see Figure 4f).

The representation of Figure 5 is the key to determining the
reliability of new predictions. Assuming that the behaviour of
the method is going to be similar in the prediction of new protein
secondary structure percentages to that in the 24 training spectra,
the representation of Figure 5 is supposed to allow the assignation
of a maximal error value for several ranges of distances that
would not be surpassed in the prediction of any new problem
protein. So, in every prediction the algorithm not only gives the
secondary structure values, it also estimates the maximal error
of the prediction, depending on the distance between the weight
vector of the winning neuron and the CD spectrum of the problem
protein.

The method itself can give hints about the accuracy of the
prediction. Good enough spectra (small distances) provide good
estimation, as shown in Figure 5. This error—distance
relationship depends exclusively on the characteristics of the
algorithm used (learning parameters, network geometry and size,
estimation parameters) but it is independent of the set of examples
(number and quality of the examples, wavelength range,
wavelength step).

Discussion

In this paper a new method for protein secondary structure
quantification has been presented. The term proteinotopic
mapping has been introduced in reference to the classification
of proteins in a map.

Firstly, using an optimized self-organizing map algorithm, a
proteinotopic map 1s calculated from a set of CD spectra of pro-
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Fig. 4. CD spectra of the winning neuron obtained in the estimation of each of the {8 proteic examples {£) and actual spectrum (—). The winning neuron

spectrum is the mean over 20 afgorithm runs. The axis limits are the same as those of Figure 3. The corresponding proteins are (A) myogtobin, (B) lactate

dehydrogenase, (C) lysozyme, (D) cytochrome ¢, (E) subtilisin BPN', (F) papain, (G) ribonuclease A, (H) a-chymotrypsin, (I) elastase, (J) concanavalin A,
(K) parvalbumin, (L) adenylate kinase, (M) insulin, (N) carboxypeptidase A, (O) thermolysin, (P) trypsin inhibitor, (Q) ribonuclease S and (R) nuclease.

teins of known structure. The map is continuous, 1.e. proximal
neurons respond to similar spectra. The main features present
in the set of CD spectra are extracted, being displayed in an
invariable map that suggests the underlying presence of a
secondary structure map.

Secondly, a structure map is obtained from the proteinotopic
map whose continuity is preserved. Therefore, similar structure
values correspond to similar CD spectra. The structure values
are interpolated among those of the examples and therefore
negative secondary structure values cannot appear.

Given a problem protein, its winning neuron is defined as the
one whose weight vector is the closest to the spectrum of this
protein. The structure values corresponding to that winning
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neuron by the estimation method are assigned to the problem
protein. It was shown that when the spectrum vector of the
winning peuron is quite close to the real spectrum, the error in
the estimation is low. This allows us to define a threshold for
the distance between these spectra that assures a maximal error.

The method works in the 200240 nm range, which is the
analysed part of the CD spectra when a physiological medium
is used. In addition, this method allows us to calculate a spectrum,
giving a direct visualization of how the algorithm works. Due
to the properties of the SOM algorithm it is not necessary to filter
or to make corrections on the set of examples. During the train-
ing of the network, clusters of neurons compete for the set of
proteins. Those clusters responding to examples with anomalous
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Table I. Structure values estimated for eighteen proteins and the corresponding real values

Calculated

Real
a 3 W o S Y
Myoglobin 074 = 0.19 0.08 = 0.02 0.17 = 0.09 0.79 0.00 0.21
Lactate dehydrogenase 0.55 £ 0.4 0.11 = 0.04 034 £ 0.04 0.45 0.24 0.31
Lysozymc 0.24 = 0.00 0.15 £ 0.00 0.61 = 0.00 0.41 0.16 0.43
Cytochrome ¢ 0.43 + 0.02 0.23 = 0.00 0.34 = 0.03 0.39 0.00 0.61
Subtilisin BPN' 0.25 + 0.03 0.28 + 0.09 0.47 + 0.09 0.31 0.10 0.39
Papain 0.26 + 0.03 0.15 = 0.00 0.58 = 0.03 0.28 0.14 0.58
Ribonuclease A 0.26 = 0.00 0.43 £ 0.00 0.31 = 0.01 0.23 0.40 0.37
a-Chymotrypsin 0.12 = 0.07 0.33 + 0.06 0.55 = 0.09 0.09 0.34 0.57
Elastase 0.05 = 0.02 0.20 + 0.07 0.75 + 0.09 0.07 0.52 0.41
Concanavalin A 0.37 = 0.00 0.15 + 0.00 0.48 + 0.00 0.02 0.51 0.47
Parvalbumin 0.53 = 0.01 0.13 = 0.0l 034 = 0.01 0.62 0.05 0.33
Adenylate kinase 0.55 = 0.03 0.14 = 0.04 0.31 = 0.02 0.54 0.12 0.34
[nsulin 041 + 0.04 0.20 = 0.05 0.40 = 0.05 0.51 0.24 0.25
Carboxypeptidase A 032 £ 0.10 0.15 £ 0.11 0.53 £ 0.05 0.37 0.15 0.48
Thermolysin 0.39 = 0.09 0.23 = 0.11 0.38 = 0.10 0.36 0.22 0.42
Trypsin inhibitor 0.21 = 0.10 021 + 0.1} 0.58 + 0.06 0.28 0.33 0.39
Ribonuclease S 0.23 = 0.00 0.39 + 0.0l 0.38 + 0.00 0.26 0.44 0.30
Nuclease 0.34 + 0.03 0.16 = 0.06 0.50 = 0.05 0.24 0.15 0.61

The estimated values were obtained using the distance method with [/ = 2. The presented values are the mean over 20 algorithm runs. The standard deviation
values are shown to indicate the invariability of the results (a 0.00 value means an SD or less than one hundredth).

spectra (i.e. the spectra of proteins affected by other interactions
different from those of the secondary structure) cannot cooperate
with any other cluster and thus they are excluded from the map.
The SOM algorithm imposes the self-organization of the map
and these anomalous spectra are not considered (if the number
of these bad examples is not excessive).

It is difficult to make a comparison with other methods for
secondary structure fractions prediction since they use different
wavelength ranges, calculate different 3-structures and use a
different number of example proteins. For classical methods, the
Pearson coefficient is usually used to give a general idea of their
fidelity. On the contrary, the algorithm presented in this work
gives a particular maximal error measurement for each ap-
plication.

However, in Table II the performance of several methods for
secondary structure prediction and the SOM method are shown
in terms of Pearson correlation coefficients. In each prediction
of the SOM method, a distance from the problem protein to the
winning neuron weight vector can be defined. To signify the
correlation between this distance and the error in the prediction,
the Pearson coefficients of the prediction of problem proteins
which have distances of less than a given distance threshold, are
shown.

The reliability of the poly(L-lysine) as a structural molecular
model for reference «-, B- and (especially) random coil
conformation has been discussed (see Yang et al., 1986; Drake
et al., 1988). In any case, we have extracted from the work of
Drake et al. (1988) the approximate CD values of the poly(L-
lysine) dissolved in water at pH 7.6 and 85°C which is ascribed
there to a disorganized conformation (since the spectra of the
same polypeptide in the presence of urea 4 M is rather similar).
The substitution of this spectrum in the set of example proteins,
for that of the poly(L-lysine) (at pH 5.7, 22°C) taken from Yang
et al. (1986), which has been used as a random coil model, does
not provoke a significant change in the performance of the method
(previous Pearson values: for [ = 2, 0.91, 0.73, 0.64; new
Pearson values: for [ =2, 0.91, 0.69, 0.73). The major
difference between the two spectra is that the poly(L-lysine) at
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Fig. 5. Mean error in the estimation of the three secondary structure values (sum
of the absolute errors in the o-, 3- and random values estimation divided by three)
plotted against the square distance from the winning neuron spectrum to the
corresponding real CD spectrum. Each point corresponds to the mean over 20
estimations of the same protein. Five points are excluded from the representation
since although they give a large d® value they have mean error values less than
0.25. Distance threshold values are represented as bars. Each bar is calculated
by taking the upper right corner as a point having a higher error value than those
of the points having lesser a® values.

85°C lacks positive CD values in the 200—240 nm range.
Nevertheless, another model for random coil conformation [the
reference spectra based on 15 proteins taken from Chang et al.
(1978)], that has a similar shape to the spectra taken from Drake
et al. (1988), is already present in the set of protein examples.

This algorithm works in seconds in a normal PC. Once a
structure map is achieved, the evaluation of the structure of an
unknown protein is easy and fast since it is only necessary to
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Table II. Comparison of different methods of prediction of secondary structure fractions

Methods a b
Chang et al. (1978) 205~-240 18
Brahms and Brahms (1980) 190240 14
Provencher and Glockner (1981) 190240 18
Hennesey and Johnson ([981) 178 -260 16
Manavalan and Johnson (1987) 190 -260 16
Bohm et al. (1992) 200~-250 13
SOM method 200~-240 24

200~240 24

SOM method®

« 3 t r

0.96 0.94 0.31 0.49
0.92 0.93 0.33 0.65
0.96 0.94 0.31 0.49
0.98 —0.27 0.18 0.24
0.95 0.45 0.54 0.69
1.00 —0.36; 0.84* 0.59 0.99
0.91 0.73 - 0.64
0.93 0.97 0.82

When some alternative methods are reported, the methods either not using the CD spectra of the example spectra to calculate the correlation coefficient, or

using the wavelength range more similar to the range in this work were selected. a, wavelength range used; b, number of example spectra; «, £, t and T,
Pearson correlation coefficients for the prediction of the «, 8, G-turns and random coil conformation percentages, respectively.

#For this method, antiparallel and parallel 3-sheet percentages are shown.

®SOM method for problem proteins with square distance <44 (six spectra from or example set fit this condition).

find its position on the map and this does not need any new
learning.

The addition of new examples for the learning process is
straightforward to do. With more examples the learning time
increases (the learning process take 20 s per example in an IBM
PC with a 80386DX processor and a 25 MHz clock and 2 s per
example in a SUN SPARCstation 2), but the resulting maps
should be more accurate since the network has more spectra to
interpolate. This is another difference of an unsupervised learning
method from other estimation methods. Statistical methods are
based on an unchangeable strategy. New examples will not
improve their accuracy. The SOM method flexibility is based
on the fact that it uses the set of known examples to interpolate
between them: the more examples it uses the better the learning
it will do.

Notes

Programs for PC computer or SUN SPARCstation 2 will be
available in summer 1993 via anonymous ftp to solea.quim.ucm.es
(internet number 147.96.5.69). To get the PC version enter ‘get
k2d.PC .tar.z’. To get the SUN version enter ‘get k2d.SUN.tar.z’.
To get an ASCII documentation file enter ‘get k2d.read.me’.
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